亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The aim of this study was to develop a model to accurately identify corresponding points between organ segmentations of different patients for radiotherapy applications. A model for simultaneous correspondence and interpolation estimation in 3D shapes was trained with head and neck organ segmentations from planning CT scans. We then extended the original model to incorporate imaging information using two approaches: 1) extracting features directly from image patches, and 2) including the mean square error between patches as part of the loss function. The correspondence and interpolation performance were evaluated using the geodesic error, chamfer distance and conformal distortion metrics, as well as distances between anatomical landmarks. Each of the models produced significantly better correspondences than the baseline non-rigid registration approach. The original model performed similarly to the model with direct inclusion of image features. The best performing model configuration incorporated imaging information as part of the loss function which produced more anatomically plausible correspondences. We will use the best performing model to identify corresponding anatomical points on organs to improve spatial normalisation, an important step in outcome modelling, or as an initialisation for anatomically informed registrations. All our code is publicly available at //github.com/rrr-uom-projects/Unsup-RT-Corr-Net

相關內容

In this paper, neural network approximation methods are developed for elliptic partial differential equations with multi-frequency solutions. Neural network work approximation methods have advantages over classical approaches in that they can be applied without much concerns on the form of the differential equations or the shape or dimension of the problem domain. When applied to problems with multi-frequency solutions, the performance and accuracy of neural network approximation methods are strongly affected by the contrast of the high- and low-frequency parts in the solutions. To address this issue, domain scaling and residual correction methods are proposed. The efficiency and accuracy of the proposed methods are demonstrated for multi-frequency model problems.

Batch effects are pervasive in biomedical studies. One approach to address the batch effects is repeatedly measuring a subset of samples in each batch. These remeasured samples are used to estimate and correct the batch effects. However, rigorous statistical methods for batch effect correction with remeasured samples are severely under-developed. In this study, we developed a framework for batch effect correction using remeasured samples in highly confounded case-control studies. We provided theoretical analyses of the proposed procedure, evaluated its power characteristics, and provided a power calculation tool to aid in the study design. We found that the number of samples that need to be remeasured depends strongly on the between-batch correlation. When the correlation is high, remeasuring a small subset of samples is possible to rescue most of the power.

In biomedical applications it is often necessary to estimate a physiological response to a treatment consisting of multiple components, and learn the separate effects of the components in addition to the joint effect. Here, we extend existing probabilistic nonparametric approaches to explicitly address this problem. We also develop a new convolution-based model for composite treatment-response curves that is more biologically interpretable. We validate our models by estimating the impact of carbohydrate and fat in meals on blood glucose. By differentiating treatment components, incorporating their dosages, and sharing statistical information across patients via a hierarchical multi-output Gaussian process, our method improves prediction accuracy over existing approaches, and allows us to interpret the different effects of carbohydrates and fat on the overall glucose response.

Persistent homology is a popular computational tool for detecting non-trivial topology of point clouds, such as the presence of loops or voids. However, many real-world datasets with low intrinsic dimensionality reside in an ambient space of much higher dimensionality. We show that in this case vanilla persistent homology becomes very sensitive to noise and fails to detect the correct topology. The same holds true for most existing refinements of persistent homology. As a remedy, we find that spectral distances on the $k$-nearest-neighbor graph of the data, such as diffusion distance and effective resistance, allow persistent homology to detect the correct topology even in the presence of high-dimensional noise. Furthermore, we derive a novel closed-form expression for effective resistance in terms of the eigendecomposition of the graph Laplacian, and describe its relation to diffusion distances. Finally, we apply these methods to several high-dimensional single-cell RNA-sequencing datasets and show that spectral distances on the $k$-nearest-neighbor graph allow robust detection of cell cycle loops.

Imaging through perturbed multimode fibres based on deep learning has been widely researched. However, existing methods mainly use target-speckle pairs in different configurations. It is challenging to reconstruct targets without trained networks. In this paper, we propose a physics-assisted, unsupervised, learning-based fibre imaging scheme. The role of the physical prior is to simplify the mapping relationship between the speckle pattern and the target image, thereby reducing the computational complexity. The unsupervised network learns target features according to the optimized direction provided by the physical prior. Therefore, the reconstruction process of the online learning only requires a few speckle patterns and unpaired targets. The proposed scheme also increases the generalization ability of the learning-based method in perturbed multimode fibres. Our scheme has the potential to extend the application of multimode fibre imaging.

We study the canonical momentum based discretizations of a hybrid model with kinetic ions and mass-less electrons. Two equivalent formulations of the hybrid model are presented, in which the vector potentials are in different gauges and the distribution functions depend on canonical momentum (not velocity). Particle-in-cell methods are used for the distribution functions, and the vector potentials are discretized by the finite element methods in the framework of finite element exterior calculus. Splitting methods are used for the time discretizations. It is illustrated that the second formulation is numerically superior and the schemes constructed based on the anti-symmetric bracket proposed have better conservation properties, although the filters can be used to improve the schemes of the first formulation.

In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.

At least two, different approaches to define and solve statistical models for the analysis of economic systems exist: the typical, econometric one, interpreting the Gravity Model specification as the expected link weight of an arbitrary probability distribution, and the one rooted into statistical physics, constructing maximum-entropy distributions constrained to satisfy certain network properties. In a couple of recent, companion papers they have been successfully integrated within the framework induced by the constrained minimisation of the Kullback-Leibler divergence: specifically, two, broad classes of models have been devised, i.e. the integrated and the conditional ones, defined by different, probabilistic rules to place links, load them with weights and turn them into proper, econometric prescriptions. Still, the recipes adopted by the two approaches to estimate the parameters entering into the definition of each model differ. In econometrics, a likelihood that decouples the binary and weighted parts of a model, treating a network as deterministic, is typically maximised; to restore its random character, two alternatives exist: either solving the likelihood maximisation on each configuration of the ensemble and taking the average of the parameters afterwards or taking the average of the likelihood function and maximising the latter one. The difference between these approaches lies in the order in which the operations of averaging and maximisation are taken - a difference that is reminiscent of the quenched and annealed ways of averaging out the disorder in spin glasses. The results of the present contribution, devoted to comparing these recipes in the case of continuous, conditional network models, indicate that the annealed estimation recipe represents the best alternative to the deterministic one.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司