亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mortality patterns at a subnational level or across subpopulations are often used to examine the health of a population. In small populations, however, death counts are erratic. To deal with this problem, demographers have proposed different methods but it is unclear how these methods relate to each other. We aim to provide guidance. First, we review recent demographic small-area methods for mortality schedules. Second, we evaluate three methodological approaches using simulated data. We show that there is considerable variability in the performance across ages and subpopulations/regions and that this performance can depend on the choice of incorporated demographic knowledge.

相關內容

Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final model performance. However, this eye/face patch cropping process is expensive, erroneous, and implementation-specific for different methods. In this paper, we propose a frame-to-gaze network that directly predicts both 3D gaze origin and 3D gaze direction from the raw frame out of the camera without any face or eye cropping. Our method demonstrates that direct gaze regression from the raw downscaled frame, from FHD/HD to VGA/HVGA resolution, is possible despite the challenges of having very few pixels in the eye region. The proposed method achieves comparable results to state-of-the-art methods in Point-of-Gaze (PoG) estimation on three public gaze datasets: GazeCapture, MPIIFaceGaze, and EVE, and generalizes well to extreme camera view changes.

This dataset contains 10,000 fluid flow and heat transfer simulations in U-bend shapes. Each of them is described by 28 design parameters, which are processed with the help of Computational Fluid Dynamics methods. The dataset provides a comprehensive benchmark for investigating various problems and methods from the field of design optimization. For these investigations supervised, semi-supervised and unsupervised deep learning approaches can be employed. One unique feature of this dataset is that each shape can be represented by three distinct data types including design parameter and objective combinations, five different resolutions of 2D images from the geometry and the solution variables of the numerical simulation, as well as a representation using the cell values of the numerical mesh. This third representation enables considering the specific data structure of numerical simulations for deep learning approaches. The source code and the container used to generate the data are published as part of this work.

Research on the theoretical expressiveness of Graph Neural Networks (GNNs) has developed rapidly, and many methods have been proposed to enhance the expressiveness. However, most methods do not have a uniform expressiveness measure except for a few that strictly follow the $k$-dimensional Weisfeiler-Lehman ($k$-WL) test hierarchy. Their theoretical analyses are often limited to distinguishing certain families of non-isomorphic graphs, leading to difficulties in quantitatively comparing their expressiveness. In contrast to theoretical analysis, another way to measure expressiveness is by evaluating model performance on certain datasets containing 1-WL-indistinguishable graphs. Previous datasets specifically designed for this purpose, however, face problems with difficulty (any model surpassing 1-WL has nearly 100% accuracy), granularity (models tend to be either 100% correct or near random guess), and scale (only a few essentially different graphs in each dataset). To address these limitations, we propose a new expressiveness dataset, $\textbf{BREC}$, which includes 400 pairs of non-isomorphic graphs carefully selected from four primary categories (Basic, Regular, Extension, and CFI). These graphs have higher difficulty (up to 4-WL-indistinguishable), finer granularity (able to compare models between 1-WL and 3-WL), and a larger scale (400 pairs). Further, we synthetically test 16 models with higher-than-1-WL expressiveness on our BREC dataset. Our experiment gives the first thorough comparison of the expressiveness of those state-of-the-art beyond-1-WL GNN models. We expect this dataset to serve as a benchmark for testing the expressiveness of future GNNs. Our dataset and evaluation code are released at: //github.com/GraphPKU/BREC.

Current transformer-based models achieved great success in generating radiology reports from chest X-ray images. Nonetheless, one of the major issues is the model's lack of prior knowledge, which frequently leads to false references to non-existent prior exams in synthetic reports. This is mainly due to the knowledge gap between radiologists and the generation models: radiologists are aware of the prior information of patients to write a medical report, while models only receive X-ray images at a specific time. To address this issue, we propose a novel approach that employs a labeler to extract comparison prior information from radiology reports in the IU X-ray and MIMIC-CXR datasets. This comparison prior is then incorporated into state-of-the-art transformer-based models, allowing them to generate more realistic and comprehensive reports. We test our method on the IU X-ray and MIMIC-CXR datasets and find that it outperforms previous state-of-the-art models in terms of both automatic and human evaluation metrics. In addition, unlike previous models, our model generates reports that do not contain false references to non-existent prior exams. Our approach provides a promising direction for bridging the gap between radiologists and generation models in medical report generation.

Font generation is a difficult and time-consuming task, especially in those languages using ideograms that have complicated structures with a large number of characters, such as Chinese. To solve this problem, few-shot font generation and even one-shot font generation have attracted a lot of attention. However, most existing font generation methods may still suffer from (i) large cross-font gap challenge; (ii) subtle cross-font variation problem; and (iii) incorrect generation of complicated characters. In this paper, we propose a novel one-shot font generation method based on a diffusion model, named Diff-Font, which can be stably trained on large datasets. The proposed model aims to generate the entire font library by giving only one sample as the reference. Specifically, a large stroke-wise dataset is constructed, and a stroke-wise diffusion model is proposed to preserve the structure and the completion of each generated character. To our best knowledge, the proposed Diff-Font is the first work that developed diffusion models to handle the font generation task. The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation. Compared to previous font generation methods, our model reaches state-of-the-art performance both qualitatively and quantitatively.

Given a small set of images of a specific subject, subject-driven text-to-image generation aims to generate customized images of the subject according to new text descriptions, which has attracted increasing attention in the community recently. Current subject-driven text-to-image generation methods are mainly based on finetuning a pretrained large-scale text-to-image generation model. However, these finetuning methods map the images of the subject into an embedding highly entangled with subject-identity-unrelated information, which may result in the inconsistency between the generated images and the text descriptions and the changes in the subject identity. To tackle the problem, we propose DisenBooth, a disentangled parameter-efficient tuning framework for subject-driven text-to-image generation. DisenBooth enables generating new images that simultaneously preserve the subject identity and conform to the text descriptions, by disentangling the embedding into an identity-related and an identity-unrelated part. Specifically, DisenBooth is based on the pretrained diffusion models and conducts finetuning in the diffusion denoising process, where a shared identity embedding and an image-specific identity-unrelated embedding are utilized jointly for denoising each image. To make the two embeddings disentangled, two auxiliary objectives are proposed. Additionally, to improve the finetuning efficiency, a parameter-efficient finetuning strategy is adopted. Extensive experiments show that our DisenBooth can faithfully learn well-disentangled identity-related and identity-unrelated embeddings. With the shared identity embedding, DisenBooth demonstrates superior subject-driven text-to-image generation ability. Additionally, DisenBooth provides a more flexible and controllable framework with different combinations of the disentangled embeddings.

Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems. Despite substantial advancements, the generalization of existing approaches to real-world applications remains challenging. This limitation can be attributed to the scarcity and lack of diversity in publicly available FAS datasets, which often leads to overfitting during training or saturation during testing. In terms of quantity, the number of spoof subjects is a critical determinant. Most datasets comprise fewer than 2,000 subjects. With regard to diversity, the majority of datasets consist of spoof samples collected in controlled environments using repetitive, mechanical processes. This data collection methodology results in homogenized samples and a dearth of scenario diversity. To address these shortcomings, we introduce the Wild Face Anti-Spoofing (WFAS) dataset, a large-scale, diverse FAS dataset collected in unconstrained settings. Our dataset encompasses 853,729 images of 321,751 spoof subjects and 529,571 images of 148,169 live subjects, representing a substantial increase in quantity. Moreover, our dataset incorporates spoof data obtained from the internet, spanning a wide array of scenarios and various commercial sensors, including 17 presentation attacks (PAs) that encompass both 2D and 3D forms. This novel data collection strategy markedly enhances FAS data diversity. Leveraging the WFAS dataset and Protocol 1 (Known-Type), we host the Wild Face Anti-Spoofing Challenge at the CVPR2023 workshop. Additionally, we meticulously evaluate representative methods using Protocol 1 and Protocol 2 (Unknown-Type). Through an in-depth examination of the challenge outcomes and benchmark baselines, we provide insightful analyses and propose potential avenues for future research. The dataset is released under Insightface.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.

A variety of deep neural networks have been applied in medical image segmentation and achieve good performance. Unlike natural images, medical images of the same imaging modality are characterized by the same pattern, which indicates that same normal organs or tissues locate at similar positions in the images. Thus, in this paper we try to incorporate the prior knowledge of medical images into the structure of neural networks such that the prior knowledge can be utilized for accurate segmentation. Based on this idea, we propose a novel deep network called knowledge-based fully convolutional network (KFCN) for medical image segmentation. The segmentation function and corresponding error is analyzed. We show the existence of an asymptotically stable region for KFCN which traditional FCN doesn't possess. Experiments validate our knowledge assumption about the incorporation of prior knowledge into the convolution kernels of KFCN and show that KFCN can achieve a reasonable segmentation and a satisfactory accuracy.

北京阿比特科技有限公司