亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Electric Field Integral Equation (EFIE) is a well-established tool to solve scattering problems. But the development of efficient and easy to implement preconditioners remains an active research area. In recent years, operator preconditioning approaches have become popular for the EFIE, where the electric field operator is regularised by multiplication with another convenient operator. A particularly intriguing choice is the exact Magnetic-to-Electric (MtE) operator as regulariser. However, evaluating this operator is as expensive as solving the original EFIE. In a work by El Bouajaji, Antoine and Geuzaine approximate local Magnetic-to-Electric surface operators for the time-harmonic Maxwell equation were proposed that can be efficiently evaluated through the solution of sparse surface problems. This paper demonstrates the preconditioning properties of these approximate MtE operators for the EFIE. The implementation is described and a number of numerical comparisons against other preconditioning techniques for the EFIE are presented to demonstrate the effectiveness of this new technique.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Data assimilation algorithms combine information from observations and prior model information to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational assimilation problem can be reformulated as a saddle point problem, in order to exploit highly parallel modern computer architectures. In this setting, the choice of preconditioner is crucial to ensure fast convergence and retain the inherent parallelism of the saddle point formulation. We propose new preconditioning approaches for the model term and observation error covariance term which lead to fast convergence of preconditioned Krylov subspace methods, and many of these suggested approximations are highly parallelisable. In particular our novel approach includes model information in the model term within the preconditioner, which to our knowledge has not previously been considered for data assimilation problems. We develop new theory demonstrating the effectiveness of the new preconditioners. Linear and non-linear numerical experiments reveal that our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of problems than indicated by the theory alone. We present a range of numerical experiments performed in serial, with further improvements expected if the highly parallelisable nature of the preconditioners is exploited.

This paper presents unitary-precoded single-carrier (USC) modulation as a family of waveforms based on multiplexing the information symbols on time domain unitary basis functions. The common property of these basis functions is that they span the entire time and frequency plane. The recently proposed orthogonal time frequency space (OTFS) and orthogonal time sequency multiplexing (OTSM) based on discrete Fourier transform (DFT) and Walsh Hadamard transform (WHT), respectively, fall in the general framework of USC waveforms. In this work, we present channel estimation and detection methods that work for any USC waveform and numerically show that any choice of unitary precoding results in the same error performance. Lastly, we implement some USC systems and compare their performance with OFDM in a real-time indoor setting using an SDR platform.

The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $\mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $\alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions.

The Kaczmarz method is an iterative numerical method for solving large and sparse rectangular systems of linear equations. Gearhart, Koshy and Tam have developed an acceleration technique for the Kaczmarz method that minimizes the distance to the desired solution in the direction of a full Kaczmarz step. The present paper generalizes this technique to an acceleration scheme that minimizes the Euclidean norm error over an affine subspace spanned by a number of previous iterates and one additional cycle of the Kaczmarz method. The key challenge is to find a formulation in which all parameters of the least-squares problem defining the unique minimizer are known, and to solve this problem efficiently. A numerical experiment demonstrates that the proposed affine search has the potential to clearly outperform the Kaczmarz and the randomized Kaczmarz methods with and without the Gearhart-Koshy/Tam line-search.

This work studies anomaly detection under differential privacy with Gaussian perturbation using both statistical and information-theoretic tools. In our setting, the adversary aims to modify the differentially private information of a statistical dataset by inserting additional data without being detected by using the differential privacy to her/his own benefit. To this end, firstly via hypothesis testing, we characterize a statistical threshold for the adversary, which balances the privacy budget and the induced bias (the impact of the attack) in order to remain undetected. In addition, we establish the privacy-distortion tradeoff in the sense of the well-known rate-distortion function for the Gaussian mechanism by using an information-theoretic approach and present an upper bound on the variance of the attacker's additional data as a function of the sensitivity and the original data's second-order statistics. Lastly, we introduce a new privacy metric based on Chernoff information for classifying adversaries under differential privacy as a stronger alternative for the Gaussian mechanism. Analytical results are supported by numerical evaluations.

The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga~-- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. The proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.

Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.

Despite the considerable success of neural networks in security settings such as malware detection, such models have proved vulnerable to evasion attacks, in which attackers make slight changes to inputs (e.g., malware) to bypass detection. We propose a novel approach, \emph{Fourier stabilization}, for designing evasion-robust neural networks with binary inputs. This approach, which is complementary to other forms of defense, replaces the weights of individual neurons with robust analogs derived using Fourier analytic tools. The choice of which neurons to stabilize in a neural network is then a combinatorial optimization problem, and we propose several methods for approximately solving it. We provide a formal bound on the per-neuron drop in accuracy due to Fourier stabilization, and experimentally demonstrate the effectiveness of the proposed approach in boosting robustness of neural networks in several detection settings. Moreover, we show that our approach effectively composes with adversarial training.

This paper studies the single image super-resolution problem using adder neural networks (AdderNet). Compared with convolutional neural networks, AdderNet utilizing additions to calculate the output features thus avoid massive energy consumptions of conventional multiplications. However, it is very hard to directly inherit the existing success of AdderNet on large-scale image classification to the image super-resolution task due to the different calculation paradigm. Specifically, the adder operation cannot easily learn the identity mapping, which is essential for image processing tasks. In addition, the functionality of high-pass filters cannot be ensured by AdderNet. To this end, we thoroughly analyze the relationship between an adder operation and the identity mapping and insert shortcuts to enhance the performance of SR models using adder networks. Then, we develop a learnable power activation for adjusting the feature distribution and refining details. Experiments conducted on several benchmark models and datasets demonstrate that, our image super-resolution models using AdderNet can achieve comparable performance and visual quality to that of their CNN baselines with an about 2$\times$ reduction on the energy consumption.

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.

北京阿比特科技有限公司