Unlike IPv4 addresses, which are typically masked by a NAT, IPv6 addresses could easily be correlated with user activity, endangering their privacy. Mitigations to address this privacy concern have been deployed, making existing approaches for address-to-user correlation unreliable. This work demonstrates that an adversary could still correlate IPv6 addresses with users accurately, even with these protection mechanisms. To do this, we propose an IPv6 address correlation model - SiamHAN. The model uses a Siamese Heterogeneous Graph Attention Network to measure whether two IPv6 client addresses belong to the same user even if the user's traffic is protected by TLS encryption. Using a large real-world dataset, we show that, for the tasks of tracking target users and discovering unique users, the state-of-the-art techniques could achieve only 85% and 60% accuracy, respectively. However, SiamHAN exhibits 99% and 88% accuracy.
Neural network models have become the leading solution for a large variety of tasks, such as classification, language processing, protein folding, and others. However, their reliability is heavily plagued by adversarial inputs: small input perturbations that cause the model to produce erroneous outputs. Adversarial inputs can occur naturally when the system's environment behaves randomly, even in the absence of a malicious adversary, and are a severe cause for concern when attempting to deploy neural networks within critical systems. In this paper, we present a new statistical method, called Robustness Measurement and Assessment (RoMA), which can measure the expected robustness of a neural network model. Specifically, RoMA determines the probability that a random input perturbation might cause misclassification. The method allows us to provide formal guarantees regarding the expected frequency of errors that a trained model will encounter after deployment. Our approach can be applied to large-scale, black-box neural networks, which is a significant advantage compared to recently proposed verification methods. We apply our approach in two ways: comparing the robustness of different models, and measuring how a model's robustness is affected by the magnitude of input perturbation. One interesting insight obtained through this work is that, in a classification network, different output labels can exhibit very different robustness levels. We term this phenomenon categorial robustness. Our ability to perform risk and robustness assessments on a categorial basis opens the door to risk mitigation, which may prove to be a significant step towards neural network certification in safety-critical applications.
Federated data analytics is a framework for distributed data analysis where a server compiles noisy responses from a group of distributed low-bandwidth user devices to estimate aggregate statistics. Two major challenges in this framework are privacy, since user data is often sensitive, and compression, since the user devices have low network bandwidth. Prior work has addressed these challenges separately by combining standard compression algorithms with known privacy mechanisms. In this work, we take a holistic look at the problem and design a family of privacy-aware compression mechanisms that work for any given communication budget. We first propose a mechanism for transmitting a single real number that has optimal variance under certain conditions. We then show how to extend it to metric differential privacy for location privacy use-cases, as well as vectors, for application to federated learning. Our experiments illustrate that our mechanism can lead to better utility vs. compression trade-offs for the same privacy loss in a number of settings.
Privacy in Federated Learning (FL) is studied at two different granularities: item-level, which protects individual data points, and user-level, which protects each user (participant) in the federation. Nearly all of the private FL literature is dedicated to studying privacy attacks and defenses at these two granularities. Recently, subject-level privacy has emerged as an alternative privacy granularity to protect the privacy of individuals (data subjects) whose data is spread across multiple (organizational) users in cross-silo FL settings. An adversary might be interested in recovering private information about these individuals (a.k.a. \emph{data subjects}) by attacking the trained model. A systematic study of these patterns requires complete control over the federation, which is impossible with real-world datasets. We design a simulator for generating various synthetic federation configurations, enabling us to study how properties of the data, model design and training, and the federation itself impact subject privacy risk. We propose three attacks for \emph{subject membership inference} and examine the interplay between all factors within a federation that affect the attacks' efficacy. We also investigate the effectiveness of Differential Privacy in mitigating this threat. Our takeaways generalize to real-world datasets like FEMNIST, giving credence to our findings.
Currently, the federated graph neural network (GNN) has attracted a lot of attention due to its wide applications in reality without violating the privacy regulations. Among all the privacy-preserving technologies, the differential privacy (DP) is the most promising one due to its effectiveness and light computational overhead. However, the DP-based federated GNN has not been well investigated, especially in the sub-graph-level setting, such as the scenario of recommendation system. The biggest challenge is how to guarantee the privacy and solve the non independent and identically distributed (non-IID) data in federated GNN simultaneously. In this paper, we propose DP-FedRec, a DP-based federated GNN to fill the gap. Private Set Intersection (PSI) is leveraged to extend the local graph for each client, and thus solve the non-IID problem. Most importantly, DP is applied not only on the weights but also on the edges of the intersection graph from PSI to fully protect the privacy of clients. The evaluation demonstrates DP-FedRec achieves better performance with the graph extension and DP only introduces little computations overhead.
Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node- and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%--21% on various downstream tasks.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.
Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.