亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Industrial anomaly detection is generally addressed as an unsupervised task that aims at locating defects with only normal training samples. Recently, numerous 2D anomaly detection methods have been proposed and have achieved promising results, however, using only the 2D RGB data as input is not sufficient to identify imperceptible geometric surface anomalies. Hence, in this work, we focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets, i.e., ImageNet, to construct feature databases. And we empirically find that directly using these pre-trained models is not optimal, it can either fail to detect subtle defects or mistake abnormal features as normal ones. This may be attributed to the domain gap between target industrial data and source data.Towards this problem, we propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.Both intra-modal adaptation and cross-modal alignment are optimized from a local-to-global perspective in LSFA to ensure the representation quality and consistency in the inference stage.Extensive experiments demonstrate that our method not only brings a significant performance boost to feature embedding based approaches, but also outperforms previous State-of-The-Art (SoTA) methods prominently on both MVTec-3D AD and Eyecandies datasets, e.g., LSFA achieves 97.1% I-AUROC on MVTec-3D, surpass previous SoTA by +3.4%.

相關內容

在數據挖掘中,異常檢測(英語:anomaly detection)對不符合預期模式或數據集中其他項目的項目、事件或觀測值的識別。通常異常項目會轉變成銀行欺詐、結構缺陷、醫療問題、文本錯誤等類型的問題。異常也被稱為離群值、新奇、噪聲、偏差和例外。 特別是在檢測濫用與網絡入侵時,有趣性對象往往不是罕見對象,但卻是超出預料的突發活動。這種模式不遵循通常統計定義中把異常點看作是罕見對象,于是許多異常檢測方法(特別是無監督的方法)將對此類數據失效,除非進行了合適的聚集。相反,聚類分析算法可能可以檢測出這些模式形成的微聚類。 有三大類異常檢測方法。[1] 在假設數據集中大多數實例都是正常的前提下,無監督異常檢測方法能通過尋找與其他數據最不匹配的實例來檢測出未標記測試數據的異常。監督式異常檢測方法需要一個已經被標記“正常”與“異常”的數據集,并涉及到訓練分類器(與許多其他的統計分類問題的關鍵區別是異常檢測的內在不均衡性)。半監督式異常檢測方法根據一個給定的正常訓練數據集創建一個表示正常行為的模型,然后檢測由學習模型生成的測試實例的可能性。

News image captioning task is a variant of image captioning task which requires model to generate a more informative caption with news image and the associated news article. Multimodal Large Language models have developed rapidly in recent years and is promising in news image captioning task. However, according to our experiments, common MLLMs are not good at generating the entities in zero-shot setting. Their abilities to deal with the entities information are still limited after simply fine-tuned on news image captioning dataset. To obtain a more powerful model to handle the multimodal entity information, we design two multimodal entity-aware alignment tasks and an alignment framework to align the model and generate the news image captions. Our method achieves better results than previous state-of-the-art models in CIDEr score (72.33 -> 86.29) on GoodNews dataset and (70.83 -> 85.61) on NYTimes800k dataset.

Computing the core decomposition of a graph is a fundamental problem that has recently been studied in the differentially private setting, motivated by practical applications in data mining. In particular, Dhulipala et al. [FOCS 2022] gave the first mechanism for approximate core decomposition in the challenging and practically relevant setting of local differential privacy. One of the main open problems left by their work is whether the accuracy, i.e., the approximation ratio and additive error, of their mechanism can be improved. We show the first lower bounds on the additive error of approximate and exact core decomposition mechanisms in the centralized and local model of differential privacy, respectively. We also give mechanisms for exact and approximate core decomposition in the local model, with almost matching additive error bounds. Our mechanisms are based on a black-box application of continual counting. They also yield improved mechanisms for the approximate densest subgraph problem in the local model.

Uncertainty quantification (UQ) to detect samples with large expected errors (outliers) is applied to reactive molecular potential energy surfaces (PESs). Three methods - Ensembles, Deep Evidential Regression (DER), and Gaussian Mixture Models (GMM) - were applied to the H-transfer reaction between ${\it syn-}$Criegee and vinyl hydroxyperoxide. The results indicate that ensemble models provide the best results for detecting outliers, followed by GMM. For example, from a pool of 1000 structures with the largest uncertainty, the detection quality for outliers is $\sim 90$ \% and $\sim 50$ \%, respectively, if 25 or 1000 structures with large errors are sought. On the contrary, the limitations of the statistical assumptions of DER greatly impacted its prediction capabilities. Finally, a structure-based indicator was found to be correlated with large average error, which may help to rapidly classify new structures into those that provide an advantage for refining the neural network.

Single-frame infrared small target detection is considered to be a challenging task, due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target, and target information is easy to lose in the high-level semantic layer. In this article, we propose an enhancing feature learning network (EFLNet) to address these problems. First, we notice that there is an extremely imbalance between the target and the background in the infrared image, which makes the model pay more attention to the background features rather than target features. To address this problem, we propose a new adaptive threshold focal loss (ATFL) function that decouples the target and the background, and utilizes the adaptive mechanism to adjust the loss weight to force the model to allocate more attention to target features. Second, we introduce the normalized Gaussian Wasserstein distance (NWD) to alleviate the difficulty of convergence caused by the extreme sensitivity of the bounding box regression to infrared small target. Finally, we incorporate a dynamic head mechanism into the network to enable adaptive learning of the relative importance of each semantic layer. Experimental results demonstrate our method can achieve better performance in the detection performance of infrared small target compared to the state-of-the-art (SOTA) deep-learning-based methods. The source codes and bounding box annotated datasets are available at //github.com/YangBo0411/infrared-small-target.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned mesh motion operators.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司