亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Expressive text-to-speech systems have undergone significant advancements owing to prosody modeling, but conventional methods can still be improved. Traditional approaches have relied on the autoregressive method to predict the quantized prosody vector; however, it suffers from the issues of long-term dependency and slow inference. This study proposes a novel approach called DiffProsody in which expressive speech is synthesized using a diffusion-based latent prosody generator and prosody conditional adversarial training. Our findings confirm the effectiveness of our prosody generator in generating a prosody vector. Furthermore, our prosody conditional discriminator significantly improves the quality of the generated speech by accurately emulating prosody. We use denoising diffusion generative adversarial networks to improve the prosody generation speed. Consequently, DiffProsody is capable of generating prosody 16 times faster than the conventional diffusion model. The superior performance of our proposed method has been demonstrated via experiments.

相關內容

語(yu)音(yin)(yin)合(he)成(cheng)(Speech Synthesis),也稱(cheng)為文語(yu)轉換(Text-to-Speech, TTS,它是將任意的(de)(de)(de)輸入文本轉換成(cheng)自(zi)然流暢的(de)(de)(de)語(yu)音(yin)(yin)輸出。語(yu)音(yin)(yin)合(he)成(cheng)涉及到(dao)人(ren)工智能、心理學(xue)、聲學(xue)、語(yu)言學(xue)、數(shu)字信(xin)號處理、計(ji)算(suan)機科學(xue)等(deng)(deng)多個學(xue)科技術(shu),是信(xin)息處理領域中(zhong)的(de)(de)(de)一項前(qian)沿技術(shu)。 隨著(zhu)計(ji)算(suan)機技術(shu)的(de)(de)(de)不斷提高,語(yu)音(yin)(yin)合(he)成(cheng)技術(shu)從早期的(de)(de)(de)共振(zhen)峰(feng)合(he)成(cheng),逐步發展為波形(xing)拼接合(he)成(cheng)和(he)統計(ji)參(can)數(shu)語(yu)音(yin)(yin)合(he)成(cheng),再發展到(dao)混合(he)語(yu)音(yin)(yin)合(he)成(cheng);合(he)成(cheng)語(yu)音(yin)(yin)的(de)(de)(de)質(zhi)量、自(zi)然度已經(jing)得到(dao)明顯提高,基本能滿足一些(xie)特定場合(he)的(de)(de)(de)應用需求(qiu)。目前(qian),語(yu)音(yin)(yin)合(he)成(cheng)技術(shu)在(zai)(zai)銀行、醫院等(deng)(deng)的(de)(de)(de)信(xin)息播(bo)報系統、汽車(che)導航系統、自(zi)動應答呼叫(jiao)中(zhong)心等(deng)(deng)都(dou)有(you)廣泛應用,取(qu)得了(le)巨(ju)大的(de)(de)(de)經(jing)濟(ji)效益。 另外,隨著(zhu)智能手機、MP3、PDA 等(deng)(deng)與我們(men)生活(huo)密(mi)切相(xiang)關(guan)的(de)(de)(de)媒介的(de)(de)(de)大量涌現,語(yu)音(yin)(yin)合(he)成(cheng)的(de)(de)(de)應用也在(zai)(zai)逐漸向娛樂、語(yu)音(yin)(yin)教學(xue)、康復治療等(deng)(deng)領域深入。可以(yi)說語(yu)音(yin)(yin)合(he)成(cheng)正在(zai)(zai)影(ying)響著(zhu)人(ren)們(men)生活(huo)的(de)(de)(de)方(fang)方(fang)面(mian)(mian)面(mian)(mian)。

Blockwise self-attentional encoder models have recently emerged as one promising end-to-end approach to simultaneous speech translation. These models employ a blockwise beam search with hypothesis reliability scoring to determine when to wait for more input speech before translating further. However, this method maintains multiple hypotheses until the entire speech input is consumed -- this scheme cannot directly show a single \textit{incremental} translation to users. Further, this method lacks mechanisms for \textit{controlling} the quality vs. latency tradeoff. We propose a modified incremental blockwise beam search incorporating local agreement or hold-$n$ policies for quality-latency control. We apply our framework to models trained for online or offline translation and demonstrate that both types can be effectively used in online mode. Experimental results on MuST-C show 0.6-3.6 BLEU improvement without changing latency or 0.8-1.4 s latency improvement without changing quality.

Exploiting pre-trained diffusion models for restoration has recently become a favored alternative to the traditional task-specific training approach. Previous works have achieved noteworthy success by limiting the solution space using explicit degradation models. However, these methods often fall short when faced with complex degradations as they generally cannot be precisely modeled. In this paper, we propose PGDiff by introducing partial guidance, a fresh perspective that is more adaptable to real-world degradations compared to existing works. Rather than specifically defining the degradation process, our approach models the desired properties, such as image structure and color statistics of high-quality images, and applies this guidance during the reverse diffusion process. These properties are readily available and make no assumptions about the degradation process. When combined with a diffusion prior, this partial guidance can deliver appealing results across a range of restoration tasks. Additionally, PGDiff can be extended to handle composite tasks by consolidating multiple high-quality image properties, achieved by integrating the guidance from respective tasks. Experimental results demonstrate that our method not only outperforms existing diffusion-prior-based approaches but also competes favorably with task-specific models.

Reinforcement learning has been increasingly applied in monitoring applications because of its ability to learn from previous experiences and can make adaptive decisions. However, existing machine learning-based health monitoring applications are mostly supervised learning algorithms, trained on labels and they cannot make adaptive decisions in an uncertain complex environment. This study proposes a novel and generic system, predictive deep reinforcement learning (PDRL) with multiple RL agents in a time series forecasting environment. The proposed generic framework accommodates virtual Deep Q Network (DQN) agents to monitor predicted future states of a complex environment with a well-defined reward policy so that the agent learns existing knowledge while maximizing their rewards. In the evaluation process of the proposed framework, three DRL agents were deployed to monitor a subject's future heart rate, respiration, and temperature predicted using a BiLSTM model. With each iteration, the three agents were able to learn the associated patterns and their cumulative rewards gradually increased. It outperformed the baseline models for all three monitoring agents. The proposed PDRL framework is able to achieve state-of-the-art performance in the time series forecasting process. The proposed DRL agents and deep learning model in the PDRL framework are customized to implement the transfer learning in other forecasting applications like traffic and weather and monitor their states. The PDRL framework is able to learn the future states of the traffic and weather forecasting and the cumulative rewards are gradually increasing over each episode.

We investigate nonlinear prediction/regression in an online setting and introduce a hybrid model that effectively mitigates, via a joint mechanism through a state space formulation, the need for domain-specific feature engineering issues of conventional nonlinear prediction models and achieves an efficient mix of nonlinear and linear components. In particular, we use recursive structures to extract features from raw sequential sequences and a traditional linear time series model to deal with the intricacies of the sequential data, e.g., seasonality, trends. The state-of-the-art ensemble or hybrid models typically train the base models in a disjoint manner, which is not only time consuming but also sub-optimal due to the separation of modeling or independent training. In contrast, as the first time in the literature, we jointly optimize an enhanced recurrent neural network (LSTM) for automatic feature extraction from raw data and an ARMA-family time series model (SARIMAX) for effectively addressing peculiarities associated with time series data. We achieve this by introducing novel state space representations for the base models, which are then combined to provide a full state space representation of the hybrid or the ensemble. Hence, we are able to jointly optimize both models in a single pass via particle filtering, for which we also provide the update equations. The introduced architecture is generic so that one can use other recurrent architectures, e.g., GRUs, traditional time series-specific models, e.g., ETS or other optimization methods, e.g., EKF, UKF. Due to such novel combination and joint optimization, we demonstrate significant improvements in widely publicized real life competition datasets. We also openly share our code for further research and replicability of our results.

When translating UI design prototypes to code in industry, automatically generating code from design prototypes can expedite the development of applications and GUI iterations. However, in design prototypes without strict design specifications, UI components may be composed of fragmented elements. Grouping these fragmented elements can greatly improve the readability and maintainability of the generated code. Current methods employ a two-stage strategy that introduces hand-crafted rules to group fragmented elements. Unfortunately, the performance of these methods is not satisfying due to visually overlapped and tiny UI elements. In this study, we propose EGFE, a novel method for automatically End-to-end Grouping Fragmented Elements via UI sequence prediction. To facilitate the UI understanding, we innovatively construct a Transformer encoder to model the relationship between the UI elements with multi-modal representation learning. The evaluation on a dataset of 4606 UI prototypes collected from professional UI designers shows that our method outperforms the state-of-the-art baselines in the precision (by 29.75\%), recall (by 31.07\%), and F1-score (by 30.39\%) at edit distance threshold of 4. In addition, we conduct an empirical study to assess the improvement of the generated front-end code. The results demonstrate the effectiveness of our method on a real software engineering application. Our end-to-end fragmented elements grouping method creates opportunities for improving UI-related software engineering tasks.

World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.

Missing data can pose a challenge for machine learning (ML) modeling. To address this, current approaches are categorized into feature imputation and label prediction and are primarily focused on handling missing data to enhance ML performance. These approaches rely on the observed data to estimate the missing values and therefore encounter three main shortcomings in imputation, including the need for different imputation methods for various missing data mechanisms, heavy dependence on the assumption of data distribution, and potential introduction of bias. This study proposes a Contrastive Learning (CL) framework to model observed data with missing values, where the ML model learns the similarity between an incomplete sample and its complete counterpart and the dissimilarity between other samples. Our proposed approach demonstrates the advantages of CL without requiring any imputation. To enhance interpretability, we introduce CIVis, a visual analytics system that incorporates interpretable techniques to visualize the learning process and diagnose the model status. Users can leverage their domain knowledge through interactive sampling to identify negative and positive pairs in CL. The output of CIVis is an optimized model that takes specified features and predicts downstream tasks. We provide two usage scenarios in regression and classification tasks and conduct quantitative experiments, expert interviews, and a qualitative user study to demonstrate the effectiveness of our approach. In short, this study offers a valuable contribution to addressing the challenges associated with ML modeling in the presence of missing data by providing a practical solution that achieves high predictive accuracy and model interpretability.

Many multi-object tracking (MOT) methods follow the framework of "tracking by detection", which associates the target objects-of-interest based on the detection results. However, due to the separate models for detection and association, the tracking results are not optimal.Moreover, the speed is limited by some cumbersome association methods to achieve high tracking performance. In this work, we propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module to dynamically filter and refine the search region by considering both the template information from the past frames and the detection results from the current frame with little computational burden, and a lightweight attention-based tracking head to achieve the effective fine-grained instance association. Extensive experiments and ablation study on MOT17 and MOT20 datasets demonstrate that our method can achieve the state-of-the-art performance with reasonable speed.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司