Introduction: Microblogging websites have massed rich data sources for sentiment analysis and opinion mining. In this regard, sentiment classification has frequently proven inefficient because microblog posts typically lack syntactically consistent terms and representatives since users on these social networks do not like to write lengthy statements. Also, there are some limitations to low-resource languages. The Persian language has exceptional characteristics and demands unique annotated data and models for the sentiment analysis task, which are distinctive from text features within the English dialect. Method: This paper first constructs a user opinion dataset called ITRC-Opinion by collaborative environment and insource way. Our dataset contains 60,000 informal and colloquial Persian texts from social microblogs such as Twitter and Instagram. Second, this study proposes a new deep convolutional neural network (CNN) model for more effective sentiment analysis of colloquial text in social microblog posts. The constructed datasets are used to evaluate the presented model. Furthermore, some models, such as LSTM, CNN-RNN, BiLSTM, and BiGRU with different word embeddings, including Fasttext, Glove, and Word2vec, investigated our dataset and evaluated the results. Results: The results demonstrate the benefit of our dataset and the proposed model (72% accuracy), displaying meaningful improvement in sentiment classification performance.
Annotation of discourse relations is a known difficult task, especially for non-expert annotators. In this paper, we investigate novice annotators' uncertainty on the annotation of discourse relations on spoken conversational data. We find that dialogue context (single turn, pair of turns within speaker, and pair of turns across speakers) is a significant predictor of confidence scores. We compute distributed representations of discourse relations from co-occurrence statistics that incorporate information about confidence scores and dialogue context. We perform a hierarchical clustering analysis using these representations and show that weighting discourse relation representations with information about confidence and dialogue context coherently models our annotators' uncertainty about discourse relation labels.
Label Distribution Learning (LDL) assigns soft labels, a.k.a. degrees, to a sample. In reality, it is always laborious to obtain complete degrees, giving birth to the Incomplete LDL (InLDL). However, InLDL often suffers from performance degeneration. To remedy it, existing methods need one or more explicit regularizations, leading to burdensome parameter tuning and extra computation. We argue that label distribution itself may provide useful prior, when used appropriately, the InLDL problem can be solved without any explicit regularization. In this paper, we offer a rational alternative to use such a prior. Our intuition is that large degrees are likely to get more concern, the small ones are easily overlooked, whereas the missing degrees are completely neglected in InLDL. To learn an accurate label distribution, it is crucial not to ignore the small observed degrees but to give them properly large weights, while gradually increasing the weights of the missing degrees. To this end, we first define a weighted empirical risk and derive upper bounds between the expected risk and the weighted empirical risk, which reveals in principle that weighting plays an implicit regularization role. Then, by using the prior of degrees, we design a weighted scheme and verify its effectiveness. To sum up, our model has four advantages, it is 1) model selection free, as no explicit regularization is imposed; 2) with closed form solution (sub-problem) and easy-to-implement (a few lines of codes); 3) with linear computational complexity in the number of samples, thus scalable to large datasets; 4) competitive with state-of-the-arts even without any explicit regularization.
Sparse Partial Least Squares (sPLS) is a common dimensionality reduction technique for data fusion, which projects data samples from two views by seeking linear combinations with a small number of variables with the maximum variance. However, sPLS extracts the combinations between two data sets with all data samples so that it cannot detect latent subsets of samples. To extend the application of sPLS by identifying a specific subset of samples and remove outliers, we propose an $\ell_\infty/\ell_0$-norm constrained weighted sparse PLS ($\ell_\infty/\ell_0$-wsPLS) method for joint sample and feature selection, where the $\ell_\infty/\ell_0$-norm constrains are used to select a subset of samples. We prove that the $\ell_\infty/\ell_0$-norm constrains have the Kurdyka-\L{ojasiewicz}~property so that a globally convergent algorithm is developed to solve it. Moreover, multi-view data with a same set of samples can be available in various real problems. To this end, we extend the $\ell_\infty/\ell_0$-wsPLS model and propose two multi-view wsPLS models for multi-view data fusion. We develop an efficient iterative algorithm for each multi-view wsPLS model and show its convergence property. As well as numerical and biomedical data experiments demonstrate the efficiency of the proposed methods.
ChatGPT can improve Software Engineering (SE) research practices by offering efficient, accessible information analysis and synthesis based on natural language interactions. However, ChatGPT could bring ethical challenges, encompassing plagiarism, privacy, data security, and the risk of generating biased or potentially detrimental data. This research aims to fill the given gap by elaborating on the key elements: motivators, demotivators, and ethical principles of using ChatGPT in SE research. To achieve this objective, we conducted a literature survey, identified the mentioned elements, and presented their relationships by developing a taxonomy. Further, the identified literature-based elements (motivators, demotivators, and ethical principles) were empirically evaluated by conducting a comprehensive questionnaire-based survey involving SE researchers. Additionally, we employed Interpretive Structure Modeling (ISM) approach to analyze the relationships between the ethical principles of using ChatGPT in SE research and develop a level based decision model. We further conducted a Cross-Impact Matrix Multiplication Applied to Classification (MICMAC) analysis to create a cluster-based decision model. These models aim to help SE researchers devise effective strategies for ethically integrating ChatGPT into SE research by following the identified principles through adopting the motivators and addressing the demotivators. The findings of this study will establish a benchmark for incorporating ChatGPT services in SE research with an emphasis on ethical considerations.
We investigate the emergent abilities of the recently proposed web-scale speech model Whisper, by adapting it to unseen tasks with prompt engineering. We selected three tasks: audio-visual speech recognition (AVSR), code-switched speech recognition (CS-ASR), and speech translation (ST) on unseen language pairs. We design task-specific prompts, by either leveraging another large-scale model, or simply manipulating the special tokens in the default prompts. Experiments show that compared to the default prompts, our proposed prompts improve performance by 10% to 45% on the three zero-shot tasks, and even outperform SotA supervised models on some datasets. In addition, our experiments reveal many interesting properties of Whisper, including its robustness to prompts, bias on accents, and the multilingual understanding in its latent space. Code is available at //github.com/jasonppy/PromptingWhisper
Visual Inertial Odometry (VIO) is an essential component of modern Augmented Reality (AR) applications. However, VIO only tracks the relative pose of the device, leading to drift over time. Absolute pose estimation methods infer the device's absolute pose, but their accuracy depends on the input quality. This paper introduces VIO-APR, a new framework for markerless mobile AR that combines an absolute pose regressor (APR) with a local VIO tracking system. VIO-APR uses VIO to assess the reliability of the APR and the APR to identify and compensate for VIO drift. This feedback loop results in more accurate positioning and more stable AR experiences. To evaluate VIO-APR, we created a dataset that combines camera images with ARKit's VIO system output for six indoor and outdoor scenes of various scales. Over this dataset, VIO-APR improves the median accuracy of popular APR by up to 36\% in position and 29\% in orientation, increases the percentage of frames in the high ($0.25 m, 2^{\circ}$) accuracy level by up to 112\% and reduces the percentage of frames predicted below the low ($5 m, 10^\circ$) accuracy greatly. We implement VIO-APR into a mobile AR application using Unity to demonstrate its capabilities. VIO-APR results in noticeably more accurate localization and a more stable overall experience.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.