亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show how to learn discrete field theories from observational data of fields on a space-time lattice. For this, we train a neural network model of a discrete Lagrangian density such that the discrete Euler--Lagrange equations are consistent with the given training data. We, thus, obtain a structure-preserving machine learning architecture. Lagrangian densities are not uniquely defined by the solutions of a field theory. We introduce a technique to derive regularisers for the training process which optimise numerical regularity of the discrete field theory. Minimisation of the regularisers guarantees that close to the training data the discrete field theory behaves robust and efficient when used in numerical simulations. Further, we show how to identify structurally simple solutions of the underlying continuous field theory such as travelling waves. This is possible even when travelling waves are not present in the training data. This is compared to data-driven model order reduction based approaches, which struggle to identify suitable latent spaces containing structurally simple solutions when these are not present in the training data. Ideas are demonstrated on examples based on the wave equation and the Schr\"odinger equation.

相關內容

I propose an alternative algorithm to compute the MMS voting rule. Instead of using linear programming, in this new algorithm the maximin support value of a committee is computed using a sequence of maximum flow problems.

Problems from metric graph theory such as Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact on the field of parameterized complexity by being the first problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. More specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to hypergraph dualization, arguably one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in different works this last decade: for which vertex (or edge) set graph property $\Pi$ is the enumeration of minimal (or maximal) subsets satisfying $\Pi$ equivalent to hypergraph dualization? As only very few properties are known to fit within this context -- namely, properties related to minimal domination -- our results make significant progress in characterizing such properties, and provide new angles of approach for tackling hypergraph dualization. In a second step, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show these cases to be mainly tractable.

In this paper, we propose to regularize ill-posed inverse problems using a deep hierarchical variational autoencoder (HVAE) as an image prior. The proposed method synthesizes the advantages of i) denoiser-based Plug \& Play approaches and ii) generative model based approaches to inverse problems. First, we exploit VAE properties to design an efficient algorithm that benefits from convergence guarantees of Plug-and-Play (PnP) methods. Second, our approach is not restricted to specialized datasets and the proposed PnP-HVAE model is able to solve image restoration problems on natural images of any size. Our experiments show that the proposed PnP-HVAE method is competitive with both SOTA denoiser-based PnP approaches, and other SOTA restoration methods based on generative models.

In this paper, we perform a roundoff error analysis of an integration-based method for computing the matrix sign function recently proposed by Nakaya and Tanaka. The method expresses the matrix sign function using an integral representation and computes the integral numerically by the double-exponential formula. While the method has large-grain parallelism and works well for well-conditioned matrices, its accuracy deteriorates when the input matrix is ill-conditioned or highly nonnormal. We investigate the reason for this phenomenon by a detailed roundoff error analysis.

The growth of dendritic grains during solidification is often modelled using the Grain Envelope Model (GEM), in which the envelope of the dendrite is an interface tracked by the Phase Field Interface Capturing (PFIC) method. In the PFIC method, an phase-field equation is solved on a fixed mesh to track the position of the envelope. While being versatile and robust, PFIC introduces certain numerical artefacts. In this work, we present an alternative approach for the solution of the GEM that employs a Meshless (sharp) Interface Tracking (MIT) formulation, which uses direct, artefact-free interface tracking. In the MIT, the envelope (interface) is defined as a moving domain boundary and the interface-tracking nodes are boundary nodes for the diffusion problem solved in the domain. To increase the accuracy of the method for the diffusion-controlled moving-boundary problem, an \h-adaptive spatial discretization is used, thus, the node spacing is refined in the vicinity of the envelope. MIT combines a parametric surface reconstruction, a mesh-free discretization of the parametric surfaces and the space enclosed by them, and a high-order approximation of the partial differential operators and of the solute concentration field using radial basis functions augmented with monomials. The proposed method is demonstrated on a two-dimensional \h-adaptive solution of the diffusive growth of dendrite and evaluated by comparing the results to the PFIC approach. It is shown that MIT can reproduce the results calculated with PFIC, that it is convergent and that it can capture more details in the envelope shape than PFIC with a similar spatial discretization.

We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class $\mathcal{G}$ admits $O(n^{1-\epsilon})$ separators, then for any fixed $\delta\in(0,\epsilon)$ every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-depth and a complete graph of size $O(n^{1-\epsilon+\delta})$. This result holds with $\delta=0$ if we allow $H$ to have tree-depth $O(\log\log n)$. Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on $\delta$ in our results and the above $\text{td}(H)\in O(\log\log n)$ bound are both best possible. We prove that $n$-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth $t$ and a complete graph of size $O(n^{1/t})$, which is best possible. Finally, we investigate the conjecture that for any hereditary graph class $\mathcal{G}$ that admits $O(n^{1-\epsilon})$ separators, every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-width and a complete graph of size $O(n^{1-\epsilon})$. We prove this for various classes $\mathcal{G}$ of interest.

Principal variables analysis (PVA) is a technique for selecting a subset of variables that capture as much of the information in a dataset as possible. Existing approaches for PVA are based on the Pearson correlation matrix, which is not well-suited to describing the relationships between non-Gaussian variables. We propose a generalized approach to PVA enabling the use of different types of correlation, and we explore using Spearman, Gaussian copula, and polychoric correlations as alternatives to Pearson correlation when performing PVA. We compare performance in simulation studies varying the form of the true multivariate distribution over a wide range of possibilities. Our results show that on continuous non-Gaussian data, using generalized PVA with Gaussian copula or Spearman correlations provides a major improvement in performance compared to Pearson. Meanwhile, on ordinal data, generalized PVA with polychoric correlations outperforms the rest by a wide margin. We apply generalized PVA to a dataset of 102 clinical variables measured on individuals with X-linked dystonia parkinsonism (XDP), a rare neurodegenerative disorder, and we find that using different types of correlation yields substantively different sets of principal variables.

In the present paper, we study a multipoint boundary value problem for a system of Fredholm integro-differenial equations by the method of parameterization. The case of a degenerate kernel is studied separately, for which we obtain well-posedness conditions and propose some algorithms to find approximate and numerical solutions to the problem. Then we establish necessary and sufficient conditions for the well-posedness of the multipoint problem for the system of Fredholm integro-differential equations and develop some algorithms for finding its approximate solutions. These algorithms are based on the solutions of an approximating problem for the system of integro-differential equations with degenerate kernel.

Given $n$ noisy samples with $p$ dimensions, where $n \ll p$, we show that the multi-step thresholding procedure based on the Lasso -- we call it the {\it Thresholded Lasso}, can accurately estimate a sparse vector $\beta \in {\mathbb R}^p$ in a linear model $Y = X \beta + \epsilon$, where $X_{n \times p}$ is a design matrix normalized to have column $\ell_2$-norm $\sqrt{n}$, and $\epsilon \sim N(0, \sigma^2 I_n)$. We show that under the restricted eigenvalue (RE) condition, it is possible to achieve the $\ell_2$ loss within a logarithmic factor of the ideal mean square error one would achieve with an {\em oracle } while selecting a sufficiently sparse model -- hence achieving {\it sparse oracle inequalities}; the oracle would supply perfect information about which coordinates are non-zero and which are above the noise level. We also show for the Gauss-Dantzig selector (Cand\`{e}s-Tao 07), if $X$ obeys a uniform uncertainty principle, one will achieve the sparse oracle inequalities as above, while allowing at most $s_0$ irrelevant variables in the model in the worst case, where $s_0 \leq s$ is the smallest integer such that for $\lambda = \sqrt{2 \log p/n}$, $\sum_{i=1}^p \min(\beta_i^2, \lambda^2 \sigma^2) \leq s_0 \lambda^2 \sigma^2$. Our simulation results on the Thresholded Lasso match our theoretical analysis excellently.

In this paper we study discrete-time quantum walks on Cayley graphs corresponding to Dihedral groups, which are graphs with both directed and undirected edges. We consider the walks with coins that are one-parameter continuous deformation of the Grover matrix and can be written as linear combinations of certain permutation matrices. We show that the walks are periodic only for coins that are permutation or negative of a permutation matrix. Finally, we investigate the localization property of the walks through numerical simulations and observe that the walks localize for a wide range of coins for different sizes of the graphs.

北京阿比特科技有限公司