亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. For a fixed graph $H$, in the list homomorphism problem, denoted by LHom($H$), we are given a graph $G$, whose every vertex $v$ is equipped with a list $L(v) \subseteq V(H)$. We ask if there exists a homomorphism $f$ from $G$ to $H$, in which $f(v) \in L(v)$ for every $v \in V(G)$. Feder, Hell, and Huang [JGT~2003] proved that LHom($H$) is polynomial time-solvable if $H$ is a bi-arc-graph, and NP-complete otherwise. We are interested in the complexity of the LHom($H$) problem in graphs excluding a copy of some fixed graph $F$ as an induced subgraph. It is known that if $F$ is connected and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom($H$) problem is NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the remaining cases for connected graphs $F$. If $F$ is a path, we exhibit a full dichotomy. We define a class called predacious graphs and show that if $H$ is not predacious, then for every fixed $t$ the LHom($H$) problem can be solved in quasi-polynomial time in $P_t$-free graphs. On the other hand, if $H$ is predacious, then there exists $t$, such that LHom($H$) cannot be solved in subexponential time in $P_t$-free graphs. If $F$ is a subdivided claw, we show a full dichotomy in two important cases: for $H$ being irreflexive (i.e., with no loops), and for $H$ being reflexive (i.e., where every vertex has a loop). Unless the ETH fails, for irreflexive $H$ the LHom($H$) problem can be solved in subexponential time in graphs excluding a fixed subdivided claw if and only if $H$ is non-predacious and triangle-free. If $H$ is reflexive, then LHom($H$) cannot be solved in subexponential time whenever $H$ is not a bi-arc graph.

相關內容

There are numbers k and s and a URM program A(n,m) satisfying the following conditions. 1. If A(n,m) halts, then Cn(m) diverges. 2. For all n, C_k(n) = A(n,n) and C_s(n) = C_k(s). 3. A(k,s) halts and for all n, A(s,n) diverges. Here C_n(_) is a program with index n in some exhaustive enumeration of all possible programs. This has implications for solving the liar paradox and for generalization of G\"odel incompleteness theorem to formal systems other than PA.

Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.

For relational structures A, B of the same signature, the Promise Constraint Satisfaction Problem PCSP(A,B) asks whether a given input structure maps homomorphically to A or does not even map to B. We are promised that the input satisfies exactly one of these two cases. If there exists a structure C with homomorphisms $A\to C\to B$, then PCSP(A,B) reduces naturally to CSP(C). To the best of our knowledge all known tractable PCSPs reduce to tractable CSPs in this way. However Barto showed that some PCSPs over finite structures A, B require solving CSPs over infinite C. We show that even when such a reduction to finite C is possible, this structure may become arbitrarily large. For every integer $n>1$ and every prime p we give A, B of size n with a single relation of arity $n^p$ such that PCSP(A, B) reduces via a chain of homomorphisms $ A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In a second family of examples, for every prime $p\geq 7$ we construct A, B of size $p-1$ with a single ternary relation such that PCSP(A, B) reduces via $A\to C\to B$ to a tractable CSP over some C of size p but not over any smaller structure. In contrast we show that if A, B are graphs and PCSP(A,B) reduces to tractable CSP(C) for some finite digraph C, then already A or B has a tractable CSP. This extends results and answers a question of Deng et al.

A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.

We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

The classical coding theorem in Kolmogorov complexity states that if an $n$-bit string $x$ is sampled with probability $\delta$ by an algorithm with prefix-free domain then K$(x) \leq \log(1/\delta) + O(1)$. In a recent work, Lu and Oliveira [LO21] established an unconditional time-bounded version of this result, by showing that if $x$ can be efficiently sampled with probability $\delta$ then rKt$(x) = O(\log(1/\delta)) + O(\log n)$, where rKt denotes the randomized analogue of Levin's Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a $O(\log(1/\delta))$ bound instead of the information-theoretic optimal $\log(1/\delta)$. We show a coding theorem for rKt with a factor of $2$. As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given $x$, the code of the sampler, and $\delta$, it outputs, with probability $\ge 0.99$, a probabilistic representation of $x$ that certifies this rKt complexity bound. Assuming the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt$(x) \leq (2 - o(1)) \cdot \log(1/\delta) +$ poly$(\log n)$. Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. We consider pK$^t$ complexity [GKLO22], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pK$^t$, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [AF09] which characterizes the worst-case running times of languages that are in average polynomial-time over all P-samplable distributions.

For a connected graph $G=(V,E)$, a matching $M\subseteq E$ is a matching cut of $G$ if $G-M$ is disconnected. It is known that for an integer $d$, the corresponding decision problem Matching Cut is polynomial-time solvable for graphs of diameter at most $d$ if $d\leq 2$ and NP-complete if $d\geq 3$. We prove the same dichotomy for graphs of bounded radius. For a graph $H$, a graph is $H$-free if it does not contain $H$ as an induced subgraph. As a consequence of our result, we can solve Matching Cut in polynomial time for $P_6$-free graphs, extending a recent result of Feghali for $P_5$-free graphs. We then extend our result to hold even for $(sP_3+P_6)$-free graphs for every $s\geq 0$ and initiate a complexity classification of Matching Cut for $H$-free graphs.

We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of $n$ insertions and deletions. We show that any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a cardinality constraint, for any constant $\epsilon>0$, must have an amortized query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear amortized query complexity is needed in order to maintain a $0.584$-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-\epsilon)$-approximation with a $\mathsf{poly}\log(n)$ amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and $\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes the cardinality parameter or the rank of the matroid.

For any small positive real $\varepsilon$ and integer $t > \frac{1}{\varepsilon}$, we build a graph with a vertex deletion set of size $t$ to a tree, and twin-width greater than $2^{(1-\varepsilon) t}$. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and that adding an apex may multiply the twin-width by at least $2-\varepsilon$. Except for the one in oriented twin-width, these lower bounds are essentially tight.

We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.

北京阿比特科技有限公司