亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.

相關內容

We consider the randomized communication complexity of the distributed $\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this problem, there is a coordinator and $s$ servers. The $i$-th server receives $A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots, M\}^n$ and the coordinator would like to find a $(1+\epsilon)$-approximate solution to $\min_{x\in\mathbb{R}^n} \|(\sum_i A^i)x - (\sum_i b^i)\|_p$. Here $M \leq \mathrm{poly}(nd)$ for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For $p = 2$, i.e., least squares regression, we give the first optimal bound of $\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits. For $p \in (1,2)$,we obtain an $\tilde{O}(sd^2/\epsilon + sd/\mathrm{poly}(\epsilon))$ upper bound. Notably, for $d$ sufficiently large, our leading order term only depends linearly on $1/\epsilon$ rather than quadratically. We also show communication lower bounds of $\Omega(sd^2 + sd/\epsilon^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\epsilon)$ for $p\in (1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

The spectral decomposition of a symmetric, second-order tensor is widely adopted in many fields of Computational Mechanics. As an example, in elasto-plasticity under large strain and rotations, given the Cauchy deformation tensor, it is a fundamental step to compute the logarithmic strain tensor. Recently, this approach has been also adopted in small-strain isotropic plasticity to reconstruct the stress tensor as a function of its eigenvalues, allowing the formulation of predictor-corrector return algorithms in the invariants space. These algorithms not only reduce the number of unknowns at the constitutive level, but also allow the correct handling of stress states in which the plastic normals are undefined, thus ensuring a better convergence with respect to the standard approach. While the eigenvalues of a symmetric, second-order tensor can be simply computed as a function of the tensor invariants, the computation of its eigenbasis can be more difficult, especially when two or more eigenvalues are coincident. Moreover, when a Newton-Rhapson algorithm is adopted to solve nonlinear problems in Computational Mechanics, also the tensorial derivatives of the eigenbasis, whose computation is still more complicate, are required to assemble the tangent matrix. A simple and comprehensive method is presented, which can be adopted to compute a closed form representation of a second-order tensor, as well as their derivatives with respect to the tensor itself, allowing a simpler implementation of spectral decomposition of a tensor in Computational Mechanics applications.

In e-commerce search, personalized retrieval is a crucial technique for improving user shopping experience. Recent works in this domain have achieved significant improvements by the representation learning paradigm, e.g., embedding-based retrieval (EBR) and collaborative filtering (CF). EBR methods do not sufficiently exploit the useful collaborative signal and are difficult to learn the representations of long-tail item well. Graph-based CF methods improve personalization by modeling collaborative signal within the user click graph. However, existing Graph-based methods ignore user's multiple behaviours, such as click/purchase and the relevance constraint between user behaviours and items.In this paper, we propose a Graph Contrastive Learning with Multi-Objective (GCL-MO) collaborative filtering model, which solves the problems of weak relevance and incomplete personalization in e-commerce search. Specifically, GCL-MO builds a homogeneous graph of items and then optimizes a multi-objective function of personalization and relevance. Moreover, we propose a modified contrastive loss for multi-objectives graph learning, which avoids the mutual suppression among positive samples and thus improves the generalization and robustness of long-tail item representations. These learned item embeddings are then used for personalized retrieval by constructing an efficient offline-to-online inverted table. GCL-MO outperforms the online collaborative filtering baseline in both offline/online experimental metrics and shows a significant improvement in the online A/B testing of Taobao search.

We revisit the binary adversarial wiretap channel (AWTC) of type II in which an active adversary can read a fraction $r$ and flip a fraction $p$ of codeword bits. The semantic-secrecy capacity of the AWTC II is partially known, where the best-known lower bound is non-constructive, proven via a random coding argument that uses a large number (that is exponential in blocklength $n$) of random bits to seed the random code. In this paper, we establish a new derandomization result in which we match the best-known lower bound of $1-H_2(p)-r$ where $H_2(\cdot)$ is the binary entropy function via a random code that uses a small seed of only $O(n^2)$ bits. Our random code construction is a novel application of pseudolinear codes -- a class of non-linear codes that have $k$-wise independent codewords when picked at random where $k$ is a design parameter. As the key technical tool in our analysis, we provide a soft-covering lemma in the flavor of Goldfeld, Cuff and Permuter (Trans. Inf. Theory 2016) that holds for random codes with $k$-wise independent codewords.

In distributed storage systems, locally repairable codes (LRCs) are designed to reduce disk I/O and repair costs by enabling recovery of each code symbol from a small number of other symbols. To handle multiple node failures, $(r,\delta)$-LRCs are introduced to enable local recovery in the event of up to $\delta-1$ failed nodes. Constructing optimal $(r,\delta)$-LRCs has been a significant research topic over the past decade. In \cite{Luo2022}, Luo \emph{et al.} proposed a construction of linear codes by using unions of some projective subspaces within a projective space. Several new classes of Griesmer codes and distance-optimal codes were constructed, and some of them were proved to be alphabet-optimal $2$-LRCs. In this paper, we first modify the method of constructing linear codes in \cite{Luo2022} by considering a more general situation of intersecting projective subspaces. This modification enables us to construct good codes with more flexible parameters. Additionally, we present the conditions for the constructed linear codes to qualify as Griesmer codes or achieve distance optimality. Next, we explore the locality of linear codes constructed by eliminating elements from a complete projective space. The novelty of our work lies in establishing the locality as $(2,p-2)$, $(2,p-1)$, or $(2,p)$-locality, in contrast to the previous literature that only considered $2$-locality. Moreover, by combining analysis of code parameters and the C-M like bound for $(r,\delta)$-LRCs, we construct some alphabet-optimal $(2,\delta)$-LRCs which may be either Griesmer codes or not Griesmer codes. Finally, we investigate the availability and alphabet-optimality of $(r,\delta)$-LRCs constructed from our modified framework.

In this paper, we consider the estimation of a low Tucker rank tensor from a number of noisy linear measurements. The general problem covers many specific examples arising from applications, including tensor regression, tensor completion, and tensor PCA/SVD. We consider an efficient Riemannian Gauss-Newton (RGN) method for low Tucker rank tensor estimation. Different from the generic (super)linear convergence guarantee of RGN in the literature, we prove the first local quadratic convergence guarantee of RGN for low-rank tensor estimation in the noisy setting under some regularity conditions and provide the corresponding estimation error upper bounds. A deterministic estimation error lower bound, which matches the upper bound, is provided that demonstrates the statistical optimality of RGN. The merit of RGN is illustrated through two machine learning applications: tensor regression and tensor SVD. Finally, we provide the simulation results to corroborate our theoretical findings.

We study the problem of decomposing a polynomial $p$ into a sum of $r$ squares by minimizing a quadratically penalized objective $f_p(\mathbf{u}) = \left\lVert \sum_{i=1}^r u_i^2 - p\right\lVert^2$. This objective is nonconvex and is equivalent to the rank-$r$ Burer-Monteiro factorization of a semidefinite program (SDP) encoding the sum of squares decomposition. We show that for all univariate polynomials $p$, if $r \ge 2$ then $f_p(\mathbf{u})$ has no spurious second-order critical points, showing that all local optima are also global optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity conditions, $r$ has to be roughly the square root of the number of constraints (the degree of $p$) for there to be no spurious second-order critical points. Our proof uses tools from computational algebraic geometry and can be interpreted as constructing a certificate using the first- and second-order necessary conditions. We also show that by choosing a norm based on sampling equally-spaced points on the circle, the gradient $\nabla f_p$ can be computed in nearly linear time using fast Fourier transforms. Experimentally we demonstrate that this method has very fast convergence using first-order optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

北京阿比特科技有限公司