亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a novel evaluation framework for Large Language Models (LLMs) such as \textsc{Llama-2} and \textsc{Mistral}, focusing on importing Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals new insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned on instruction dataset or with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges that current LLMs face in generating diverse and high-quality text. We release our code and data.

相關內容

We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifolds. The existing approaches to learning a distribution on arbitrary manifolds are expensive at inference time, since sampling requires solving a differential equation. Our method overcomes this limitation by sampling in a single function evaluation. The key innovation is to optimize a neural network via maximum likelihood on the manifold, possible by adapting the free-form flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted to any manifold with a known projection. It consistently matches or outperforms previous single-step methods specialized to specific manifolds, and is competitive with multi-step methods with typically two orders of magnitude faster inference speed. We make our code public at //github.com/vislearn/FFF.

We develop a framework for algorithms finding the diameter in graphs of bounded distance Vapnik-Chervonenkis dimension, in (parameterized) subquadratic time complexity. The class of bounded distance VC-dimension graphs is wide, including, e.g. all minor-free graphs. We build on the work of Ducoffe et al. [SODA'20, SIGCOMP'22], improving their technique. With our approach the algorithms become simpler and faster, working in $\mathcal{O}(k \cdot n^{1-1/d} \cdot m \cdot \mathrm{polylog}(n))$ time complexity for the graph on $n$ vertices and $m$ edges, where $k$ is the diameter and $d$ is the distance VC-dimension of the graph. Furthermore, it allows us to use the improved technique in more general setting. In particular, we use this framework for geometric intersection graphs, i.e. graphs where vertices are identical geometric objects on a plane and the adjacency is defined by intersection. Applying our approach for these graphs, we partially answer a question posed by Bringmann et al. [SoCG'22], finding an $\mathcal{O}(n^{7/4} \cdot \mathrm{polylog}(n))$ parameterized diameter algorithm for unit square intersection graph of size $n$, as well as a more general algorithm for convex polygon intersection graphs.

We present a novel and flexible framework for localized tuning of Hamiltonian Monte Carlo (HMC) samplers by Gibbs sampling the algorithm's tuning parameters conditionally based on the position and momentum at each step. For adaptively sampling path lengths, the framework encompasses randomized HMC, multinomial HMC, the No-U-Turn Sampler (NUTS), and the Apogee-to-Apogee Path Sampler as special cases. The Gibbs self-tuning (GIST) framework is illustrated with an alternative to NUTS for locally adapting path lengths, evaluated with an exact Hamiltonian for an ill-conditioned normal and with the leapfrog algorithm for a test suite of diverse models.

\v{C}ech Persistence diagrams (PDs) are topological descriptors routinely used to capture the geometry of complex datasets. They are commonly compared using the Wasserstein distances $OT_{p}$; however, the extent to which PDs are stable with respect to these metrics remains poorly understood. We partially close this gap by focusing on the case where datasets are sampled on an $m$-dimensional submanifold of $\mathbb{R}^{d}$. Under this manifold hypothesis, we show that convergence with respect to the $OT_{p}$ metric happens exactly when $p\gt m$. We also provide improvements upon the bottleneck stability theorem in this case and prove new laws of large numbers for the total $\alpha$-persistence of PDs. Finally, we show how these theoretical findings shed new light on the behavior of the feature maps on the space of PDs that are used in ML-oriented applications of Topological Data Analysis.

Since the work of Polyanskiy, Poor and Verd\'u on the finite blocklength performance of capacity-achieving codes for discrete memoryless channels, many papers have attempted to find further results for more practically relevant channels. However, it seems that the complexity of computing capacity-achieving codes has not been investigated until now. We study this question for the simplest non-trivial Gaussian channels, i.e., the additive colored Gaussian noise channel. To assess the computational complexity, we consider the classes $\mathrm{FP}_1$ and $\#\mathrm{P}_1$. $\mathrm{FP}_1$ includes functions computable by a deterministic Turing machine in polynomial time, whereas $\#\mathrm{P}_1$ encompasses functions that count the number of solutions verifiable in polynomial time. It is widely assumed that $\mathrm{FP}_1\neq\#\mathrm{P}_1$. It is of interest to determine the conditions under which, for a given $M \in \mathbb{N}$, where $M$ describes the precision of the deviation of $C(P,N)$, for a certain blocklength $n_M$ and a decoding error $\epsilon > 0$ with $\epsilon\in\mathbb{Q}$, the following holds: $R_{n_M}(\epsilon)>C(P,N)-\frac{1}{2^M}$. It is shown that there is a polynomial-time computable $N_*$ such that for sufficiently large $P_*\in\mathbb{Q}$, the sequences $\{R_{n_M}(\epsilon)\}_{{n_M}\in\mathbb{N}}$, where each $R_{n_M}(\epsilon)$ satisfies the previous condition, cannot be computed in polynomial time if $\mathrm{FP}_1\neq\#\mathrm{P}_1$. Hence, the complexity of computing the sequence $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ grows faster than any polynomial as $M$ increases. Consequently, it is shown that either the sequence of achievable rates $\{R_{n_M}(\epsilon)\}_{n_M\in\mathbb{N}}$ as a function of the blocklength, or the sequence of blocklengths $\{n_M\}_{M\in\mathbb{N}}$ corresponding to the achievable rates, is not a polynomial-time computable sequence.

Trigger-Action Programming (TAP) is a popular end-user programming framework in the home automation (HA) system, which eases users to customize home automation and control devices as expected. However, its simplified syntax also introduces new safety threats to HA systems through vulnerable rule interactions. Accurately fixing these vulnerabilities by logically and physically eliminating their root causes is essential before rules are deployed. However, it has not been well studied. In this paper, we present TAPFixer, a novel framework to automatically detect and repair rule interaction vulnerabilities in HA systems. It extracts TAP rules from HA profiles, translates them into an automaton model with physical and latency features, and performs model checking with various correctness properties. It then uses a novel negated-property reasoning algorithm to automatically infer a patch via model abstraction and refinement and model checking based on negated-properties. We evaluate TAPFixer on market HA apps (1177 TAP rules and 53 properties) and find that it can achieve an 86.65% success rate in repairing rule interaction vulnerabilities. We additionally recruit 23 HA users to conduct a user study that demonstrates the usefulness of TAPFixer for vulnerability repair in practical HA scenarios.

Understanding the molecules and their textual descriptions via molecule language models (MoLM) recently got a surge of interest among researchers. However, unique challenges exist in the field of MoLM due to 1) a limited amount of molecule-text paired data and 2) missing expertise that occurred due to the specialized areas of focus among the experts. To this end, we propose AMOLE, which 1) augments molecule-text pairs with structural similarity preserving loss, and 2) transfers the expertise between the molecules. Extensive experiments on various downstream tasks demonstrate the superiority of AMOLE in comprehending molecules and their descriptions, highlighting its potential for application in real-world drug discovery.

We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司