Algorithmic predictions are emerging as a promising solution concept for efficiently allocating societal resources. Fueling their use is an underlying assumption that such systems are necessary to identify individuals for interventions. We propose a principled framework for assessing this assumption: Using a simple mathematical model, we evaluate the efficacy of prediction-based allocations in settings where individuals belong to larger units such as hospitals, neighborhoods, or schools. We find that prediction-based allocations outperform baseline methods using aggregate unit-level statistics only when between-unit inequality is low and the intervention budget is high. Our results hold for a wide range of settings for the price of prediction, treatment effect heterogeneity, and unit-level statistics' learnability. Combined, we highlight the potential limits to improving the efficacy of interventions through prediction.
Rapid advancements in imaging techniques and analytical methods over the past decade have revolutionized our ability to comprehensively probe the biological world at multiple scales, pinpointing the type, quantity, location, and even temporal dynamics of biomolecules. The surge in data complexity and volume presents significant challenges in translating this wealth of information into knowledge. The recently emerged Multimodal Large Language Models (MLLMs) exhibit strong emergent capacities, such as understanding, analyzing, reasoning, and generalization. With these capabilities, MLLMs hold promise to extract intricate information from biological images and data obtained through various modalities, thereby expediting our biological understanding and aiding in the development of novel computational frameworks. Previously, such capabilities were mostly attributed to humans for interpreting and summarizing meaningful conclusions from comprehensive observations and analysis of biological images. However, the current development of MLLMs shows increasing promise in serving as intelligent assistants or agents for augmenting human researchers in biology research
The conditional copula model arises when the dependence between random variables is influenced by another covariate. Despite its importance in modelling complex dependence structures, there are very few fully nonparametric approaches to estimate the conditional copula function. In the bivariate setting, the only nonparametric estimator for the conditional copula is based on Sklar's Theorem and proposed by Gijbels \textit{et al.} (2011). In this paper, we propose an alternative nonparametric approach %based on functional principal component analysis. We to construct an estimator for the bivariate conditional copula from the Karhunen-Lo\`eve representation of a suitably defined conditional copula process. We establish its consistency and weak convergence to a limit Gaussian process with explicit covariance function.
Learning performance data, such as correct or incorrect responses to questions in Intelligent Tutoring Systems (ITSs) is crucial for tracking and assessing the learners' progress and mastery of knowledge. However, the issue of data sparsity, characterized by unexplored questions and missing attempts, hampers accurate assessment and the provision of tailored, personalized instruction within ITSs. This paper proposes using the Generative Adversarial Imputation Networks (GAIN) framework to impute sparse learning performance data, reconstructed into a three-dimensional (3D) tensor representation across the dimensions of learners, questions and attempts. Our customized GAIN-based method computational process imputes sparse data in a 3D tensor space, significantly enhanced by convolutional neural networks for its input and output layers. This adaptation also includes the use of a least squares loss function for optimization and aligns the shapes of the input and output with the dimensions of the questions-attempts matrices along the learners' dimension. Through extensive experiments on six datasets from various ITSs, including AutoTutor, ASSISTments and MATHia, we demonstrate that the GAIN approach generally outperforms existing methods such as tensor factorization and other generative adversarial network (GAN) based approaches in terms of imputation accuracy. This finding enhances comprehensive learning data modeling and analytics in AI-based education.
Knowledge Graph Embedding (KGE) is a popular approach, which aims to represent entities and relations of a knowledge graph in latent spaces. Their representations are known as embeddings. To measure the plausibility of triplets, score functions are defined over embedding spaces. Despite wide dissemination of KGE in various tasks, KGE methods have limitations in reasoning abilities. In this paper we propose a mathematical framework to compare reasoning abilities of KGE methods. We show that STransE has a higher capability than TransComplEx, and then present new STransCoRe method, which improves the STransE by combining it with the TransCoRe insights, which can reduce the STransE space complexity.
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
To overcome these obstacles and improve computational accuracy and efficiency, this paper presents the Randomized Radial Basis Function Neural Network (RRNN), an innovative approach explicitly crafted for solving multiscale elliptic equations. The RRNN method commences by decomposing the computational domain into non-overlapping subdomains. Within each subdomain, the solution to the localized subproblem is approximated by a randomized radial basis function neural network with a Gaussian kernel. This network is distinguished by the random assignment of width and center coefficients for its activation functions, thereby rendering the training process focused solely on determining the weight coefficients of the output layer. For each subproblem, similar to the Petrov-Galerkin finite element method, a linear system will be formulated on the foundation of a weak formulation. Subsequently, a selection of collocation points is stochastically sampled at the boundaries of the subdomain, ensuring satisfying $C^0$ and $C^1$ continuity and boundary conditions to couple these localized solutions. The network is ultimately trained using the least squares method to ascertain the output layer weights. To validate the RRNN method's effectiveness, an extensive array of numerical experiments has been executed and the results demonstrate that the proposed method can improve the accuracy and efficiency well.
We study person-level differentially private (DP) mean estimation in the case where each person holds multiple samples. DP here requires the usual notion of distributional stability when $\textit{all}$ of a person's datapoints can be modified. Informally, if $n$ people each have $m$ samples from an unknown $d$-dimensional distribution with bounded $k$-th moments, we show that \[n = \tilde \Theta\left(\frac{d}{\alpha^2 m} + \frac{d}{\alpha m^{1/2} \varepsilon} + \frac{d}{\alpha^{k/(k-1)} m \varepsilon} + \frac{d}{\varepsilon}\right)\] people are necessary and sufficient to estimate the mean up to distance $\alpha$ in $\ell_2$-norm under $\varepsilon$-differential privacy (and its common relaxations). In the multivariate setting, we give computationally efficient algorithms under approximate-DP and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP. Our computationally efficient estimators are based on the standard clip-and-noise framework, but the analysis for our setting requires both new algorithmic techniques and new analyses. In particular, our new bounds on the tails of sums of independent, vector-valued, bounded-moments random variables may be of interest.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.