亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of covariate-shift generalization has attracted intensive research attention. Previous stable learning algorithms employ sample reweighting schemes to decorrelate the covariates when there is no explicit domain information about training data. However, with finite samples, it is difficult to achieve the desirable weights that ensure perfect independence to get rid of the unstable variables. Besides, decorrelating within stable variables may bring about high variance of learned models because of the over-reduced effective sample size. A tremendous sample size is required for these algorithms to work. In this paper, with theoretical justification, we propose SVI (Sparse Variable Independence) for the covariate-shift generalization problem. We introduce sparsity constraint to compensate for the imperfectness of sample reweighting under the finite-sample setting in previous methods. Furthermore, we organically combine independence-based sample reweighting and sparsity-based variable selection in an iterative way to avoid decorrelating within stable variables, increasing the effective sample size to alleviate variance inflation. Experiments on both synthetic and real-world datasets demonstrate the improvement of covariate-shift generalization performance brought by SVI.

相關內容

Testing black-box perceptual-control systems in simulation faces two difficulties. Firstly, perceptual inputs in simulation lack the fidelity of real-world sensor inputs. Secondly, for a reasonably accurate perception system, encountering a rare failure trajectory may require running infeasibly many simulations. This paper combines perception error models -- surrogates for a sensor-based detection system -- with state-dependent adaptive importance sampling. This allows us to efficiently assess the rare failure probabilities for real-world perceptual control systems within simulation. Our experiments with an autonomous braking system equipped with an RGB obstacle-detector show that our method can calculate accurate failure probabilities with an inexpensive number of simulations. Further, we show how choice of safety metric can influence the process of learning proposal distributions capable of reliably sampling high-probability failures.

We analyze a practical algorithm for sparse PCA on incomplete and noisy data under a general non-random sampling scheme. The algorithm is based on a semidefinite relaxation of the $\ell_1$-regularized PCA problem. We provide theoretical justification that under certain conditions, we can recover the support of the sparse leading eigenvector with high probability by obtaining a unique solution. The conditions involve the spectral gap between the largest and second-largest eigenvalues of the true data matrix, the magnitude of the noise, and the structural properties of the observed entries. The concepts of algebraic connectivity and irregularity are used to describe the structural properties of the observed entries. We empirically justify our theorem with synthetic and real data analysis. We also show that our algorithm outperforms several other sparse PCA approaches especially when the observed entries have good structural properties. As a by-product of our analysis, we provide two theorems to handle a deterministic sampling scheme, which can be applied to other matrix-related problems.

Heterogeneous treatment effects (HTE) based on patients' genetic or clinical factors are of significant interest to precision medicine. Simultaneously modeling HTE and corresponding main effects for randomized clinical trials with high-dimensional predictive markers is challenging. Motivated by the modified covariates approach, we propose a two-stage statistical learning procedure for estimating HTE with optimal efficiency augmentation, generalizing to arbitrary interaction model and exploiting powerful extreme gradient boosting trees (XGBoost). Target estimands for HTE are defined in the scale of mean difference for quantitative outcomes, or risk ratio for binary outcomes, which are the minimizers of specialized loss functions. The first stage is to estimate the main-effect equivalency of the baseline markers on the outcome, which is then used as an augmentation term in the second stage estimation for HTE. The proposed two-stage procedure is robust to model mis-specification of main effects and improves efficiency for estimating HTE through nonparametric function estimation, e.g., XGBoost. A permutation test is proposed for global assessment of evidence for HTE. An analysis of a genetic study in Prostate Cancer Prevention Trial led by the SWOG Cancer Research Network, is conducted to showcase the properties and the utilities of the two-stage method.

Network anomaly detection is a very relevant research area nowadays, especially due to its multiple applications in the field of network security. The boost of new models based on variational autoencoders and generative adversarial networks has motivated a reevaluation of traditional techniques for anomaly detection. It is, however, essential to be able to understand these new models from the perspective of the experience attained from years of evaluating network security data for anomaly detection. In this paper, we revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view, and contribute a mathematical model that relates them. Specifically, we start with the probabilistic PCA model and explain its connection to the Multivariate Statistical Network Monitoring (MSNM) framework. MSNM was recently successfully proposed as a means of incorporating industrial process anomaly detection experience into the field of networking. We have evaluated the mathematical model using two different datasets. The first, a synthetic dataset created to better understand the analysis proposed, and the second, UGR'16, is a specifically designed real-traffic dataset for network security anomaly detection. We have drawn conclusions that we consider to be useful when applying generative models to network security detection.

Few-shot learning involves learning an effective model from only a few labeled datapoints. The use of a small training set makes it difficult to avoid overfitting but also makes few-shot learning applicable to many important real-world settings. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Introducing auxiliary data during few-shot learning leads to essential design choices where hand-designed heuristics can lead to sub-optimal performance. In this work, we focus on automated sampling strategies for FLAD and relate them to the explore-exploit dilemma that is central in multi-armed bandit settings. Based on this connection we propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Using our proposed algorithms to train T5 yields a 9% absolute improvement over the explicitly multi-task pre-trained T0 model across 11 datasets.

Diffusion models generate samples by reversing a fixed forward diffusion process. Despite already providing impressive empirical results, these diffusion models algorithms can be further improved by reducing the variance of the training targets in their denoising score-matching objective. We argue that the source of such variance lies in the handling of intermediate noise-variance scales, where multiple modes in the data affect the direction of reverse paths. We propose to remedy the problem by incorporating a reference batch which we use to calculate weighted conditional scores as more stable training targets. We show that the procedure indeed helps in the challenging intermediate regime by reducing (the trace of) the covariance of training targets. The new stable targets can be seen as trading bias for reduced variance, where the bias vanishes with increasing reference batch size. Empirically, we show that the new objective improves the image quality, stability, and training speed of various popular diffusion models across datasets with both general ODE and SDE solvers. When used in combination with EDM, our method yields a current SOTA FID of 1.90 with 35 network evaluations on the unconditional CIFAR-10 generation task. The code is available at //github.com/Newbeeer/stf

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

We study the problem of out-of-distribution (o.o.d.) generalization where spurious correlations of attributes vary across training and test domains. This is known as the problem of correlation shift and has posed concerns on the reliability of machine learning. In this work, we introduce the concepts of direct and indirect effects from causal inference to the domain generalization problem. We argue that models that learn direct effects minimize the worst-case risk across correlation-shifted domains. To eliminate the indirect effects, our algorithm consists of two stages: in the first stage, we learn an indirect-effect representation by minimizing the prediction error of domain labels using the representation and the class label; in the second stage, we remove the indirect effects learned in the first stage by matching each data with another data of similar indirect-effect representation but of different class label. We also propose a new model selection method by matching the validation set in the same way, which is shown to improve the generalization performance of existing models on correlation-shifted datasets. Experiments on 5 correlation-shifted datasets and the DomainBed benchmark verify the effectiveness of our approach.

Cross-Domain Recommendation (CDR) is an effective way to alleviate the cold-start problem. However, previous work severely ignores fairness and bias when learning the mapping function, which is used to obtain the representations for fresh users in the target domain. To study this problem, in this paper, we propose a Fairness-aware Cross-Domain Recommendation model, called FairCDR. Our method achieves user-oriented group fairness by learning the fairness-aware mapping function. Since the overlapping data are quite limited and distributionally biased, FairCDR leverages abundant non-overlapping users and interactions to help alleviate these problems. Considering that each individual has different influence on model fairness, we propose a new reweighing method based on Influence Function (IF) to reduce unfairness while maintaining recommendation accuracy. Extensive experiments are conducted to demonstrate the effectiveness of our model.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

北京阿比特科技有限公司