Trajectory optimization problems for legged robots are commonly formulated with fixed contact schedules. These multi-phase Hybrid Trajectory Optimization (HTO) methods result in locally optimal trajectories, but the result depends heavily upon the predefined contact mode sequence. Contact-Implicit Optimization (CIO) offers a potential solution to this issue by allowing the contact mode to be determined throughout the trajectory by the optimization solver. However, CIO suffers from long solve times and convergence issues. This work combines the benefits of these two methods into one algorithm: Staged Contact Optimization (SCO). SCO tightens constraints on contact in stages, eventually fixing them to allow robust and fast convergence to a feasible solution. Results on a planar biped and spatial quadruped demonstrate speed and optimality improvements over CIO and HTO. These properties make SCO well suited for offline trajectory generation or as an effective tool for exploring the dynamic capabilities of a robot.
Predicting turn-taking in multiparty conversations has many practical applications in human-computer/robot interaction. However, the complexity of human communication makes it a challenging task. Recent advances have shown that synchronous multi-perspective egocentric data can significantly improve turn-taking prediction compared to asynchronous, single-perspective transcriptions. Building on this research, we propose a new multimodal transformer-based architecture for predicting turn-taking in embodied, synchronized multi-perspective data. Our experimental results on the recently introduced EgoCom dataset show a substantial performance improvement of up to 14.01% on average compared to existing baselines and alternative transformer-based approaches. The source code, and the pre-trained models of our 3M-Transformer will be available upon acceptance.
Large Language Models (LLMs) have demonstrated impressive performance across various downstream tasks. When training these models, there is a growing inclination to process more tokens on larger training scales but with relatively smaller model sizes. Zero Redundancy Optimizer (ZeRO), although effective in conventional training environments, grapples with scaling challenges when confronted with this emerging paradigm. To this end, we propose a novel LLM training framework AMSP, which undertakes a granular partitioning of model states, encompassing parameters ($P$), gradient ($G$), and optimizer states ($OS$). Specifically, AMSP(1) builds a unified partitioning space, enabling independent partitioning strategies for $P$, $G$, and $OS$; (2) incorporates a scale-aware partitioner to autonomously search for optimal partitioning strategies: (3) designs a dedicated communication optimizer to ensure proficient management of data placement discrepancies arising from diverse partitioning strategies. Our evaluations show that AMSP achieves up to 90.3% scaling efficiency across 1024 GPUs.
Large multimodal models demonstrate remarkable generalist ability to perform diverse multimodal tasks in a zero-shot manner. Large-scale web-based image-text pairs contribute fundamentally to this success, but suffer from excessive noise. Recent studies use alternative captions synthesized by captioning models and have achieved notable benchmark performance. However, our experiments reveal significant Scalability Deficiency and World Knowledge Loss issues in models trained with synthetic captions, which have been largely obscured by their initial benchmark success. Upon closer examination, we identify the root cause as the overly-simplified language structure and lack of knowledge details in existing synthetic captions. To provide higher-quality and more scalable multimodal pretraining data, we propose CapsFusion, an advanced framework that leverages large language models to consolidate and refine information from both web-based image-text pairs and synthetic captions. Extensive experiments show that CapsFusion captions exhibit remarkable all-round superiority over existing captions in terms of model performance (e.g., 18.8 and 18.3 improvements in CIDEr score on COCO and NoCaps), sample efficiency (requiring 11-16 times less computation than baselines), world knowledge depth, and scalability. These effectiveness, efficiency and scalability advantages position CapsFusion as a promising candidate for future scaling of LMM training.
Thorax disease analysis in large-scale, multi-centre, and multi-scanner settings is often limited by strict privacy policies. Federated learning (FL) offers a potential solution, while traditional parameter-based FL can be limited by issues such as high communication costs, data leakage, and heterogeneity. Distillation-based FL can improve efficiency, but it relies on a proxy dataset, which is often impractical in clinical practice. To address these challenges, we introduce a data-free distillation-based FL approach FedKDF. In FedKDF, the server employs a lightweight generator to aggregate knowledge from different clients without requiring access to their private data or a proxy dataset. FedKDF combines the predictors from clients into a single, unified predictor, which is further optimized using the learned knowledge in the lightweight generator. Our empirical experiments demonstrate that FedKDF offers a robust solution for efficient, privacy-preserving federated thorax disease analysis.
Large Language Models (LLMs) have transformed the landscape of artificial intelligence, while their enormous size presents significant challenges in terms of computational costs. We introduce LoRAShear, a novel efficient approach to structurally prune LLMs and recover knowledge. Given general LLMs, LoRAShear at first creates the dependency graphs over LoRA modules to discover minimally removal structures and analyze the knowledge distribution. It then proceeds progressive structured pruning on LoRA adaptors and enables inherent knowledge transfer to better preserve the information in the redundant structures. To recover the lost knowledge during pruning, LoRAShear meticulously studies and proposes a dynamic fine-tuning schemes with dynamic data adaptors to effectively narrow down the performance gap to the full models. Numerical results demonstrate that by only using one GPU within a couple of GPU days, LoRAShear effectively reduced footprint of LLMs by 20% with only 1.0% performance degradation and significantly outperforms state-of-the-arts. The source code will be available at //github.com/microsoft/lorashear.
Interoperability has been a focus of attention over at least four decades, with the emergence of several interoperability types (or levels), diverse models, frameworks, and solutions, also as a result of a continuous effort from different domains. The current heterogeneity in technologies such as blockchain, IoT and new application domains such as Industry 4.0 brings not only new interaction possibilities but also challenges for interoperability. Moreover, confusion and ambiguity in the current understanding of interoperability types exist, hampering stakeholders' communication and decision making. This work presents an updated panorama of software-intensive systems interoperability with particular attention to its types. For this, we conducted a tertiary study that scrutinized 37 secondary studies published from 2012 to 2023, from which we found 36 interoperability types associated with 117 different definitions, besides 13 interoperability models and six frameworks in various domains. This panorama reveals that the concern with interoperability has migrated from technical to social-technical issues going beyond the software systems' boundary and still requiring solving many open issues. We also address the urgent actions and also potential research opportunities to leverage interoperability as a multidisciplinary research field to achieve low-coupled, cost-effective, and interoperable systems.
Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at //comospeech.github.io/.
The introduction of neural radiance fields has greatly improved the effectiveness of view synthesis for monocular videos. However, existing algorithms face difficulties when dealing with uncontrolled or lengthy scenarios, and require extensive training time specific to each new scenario. To tackle these limitations, we propose DynPoint, an algorithm designed to facilitate the rapid synthesis of novel views for unconstrained monocular videos. Rather than encoding the entirety of the scenario information into a latent representation, DynPoint concentrates on predicting the explicit 3D correspondence between neighboring frames to realize information aggregation. Specifically, this correspondence prediction is achieved through the estimation of consistent depth and scene flow information across frames. Subsequently, the acquired correspondence is utilized to aggregate information from multiple reference frames to a target frame, by constructing hierarchical neural point clouds. The resulting framework enables swift and accurate view synthesis for desired views of target frames. The experimental results obtained demonstrate the considerable acceleration of training time achieved - typically an order of magnitude - by our proposed method while yielding comparable outcomes compared to prior approaches. Furthermore, our method exhibits strong robustness in handling long-duration videos without learning a canonical representation of video content.
Unsupervised semantic segmentation is a challenging task that segments images into semantic groups without manual annotation. Prior works have primarily focused on leveraging prior knowledge of semantic consistency or priori concepts from self-supervised learning methods, which often overlook the coherence property of image segments. In this paper, we demonstrate that the smoothness prior, asserting that close features in a metric space share the same semantics, can significantly simplify segmentation by casting unsupervised semantic segmentation as an energy minimization problem. Under this paradigm, we propose a novel approach called SmooSeg that harnesses self-supervised learning methods to model the closeness relationships among observations as smoothness signals. To effectively discover coherent semantic segments, we introduce a novel smoothness loss that promotes piecewise smoothness within segments while preserving discontinuities across different segments. Additionally, to further enhance segmentation quality, we design an asymmetric teacher-student style predictor that generates smoothly updated pseudo labels, facilitating an optimal fit between observations and labeling outputs. Thanks to the rich supervision cues of the smoothness prior, our SmooSeg significantly outperforms STEGO in terms of pixel accuracy on three datasets: COCOStuff (+14.9%), Cityscapes (+13.0%), and Potsdam-3 (+5.7%).
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.