亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an end-to-end framework for robust structure/control optimization of an industrial benchmark. When dealing with space structures, a reduction of the spacecraft mass is paramount to minimize the mission cost and maximize the propellant availability. However, a lighter design comes with a bigger structural flexibility and the resulting impact on control performance. Two optimization architectures (distributed and monolithic) are proposed in order to face this issue. In particular the Linear Fractional Transformation (LFT) framework is exploited to formally set the two optimization problems by including parametric uncertainties. Large sets of uncertainties have to be indeed taken into account in spacecraft control design due to the impossibility to completely validate structural models in micro-gravity conditions with on-ground experiments and to the evolution of spacecraft dynamics during the mission (structure degradation and fuel consumption). In particular the Two-Input Two-Output Port (TITOP) multi-body approach is used to build the flexible dynamics in a minimal LFT form. The two proposed optimization algorithms are detailed and their performance are compared on an ESA future exploration mission, the ENVISION benchmark. With both approaches, an important reduction of the mass is obtained by coping with the mission's control performance/stability requirements and a large set of uncertainties.

相關內容

最優化是應用數(shu)學的(de)(de)一(yi)個分支(zhi),主要指在(zai)(zai)一(yi)定條件限制下,選取某種研(yan)究方案使目標(biao)達到最優的(de)(de)一(yi)種方法(fa)。最優化問(wen)題(ti)在(zai)(zai)當(dang)今的(de)(de)軍(jun)事、工(gong)程(cheng)、管理等領域(yu)有(you)著極(ji)其(qi)廣泛的(de)(de)應用。

The design of asynchronous circuits typically requires a judicious definition of signals and modules, combined with a proper specification of their timing constraints, which can be a complex and error-prone process, using standard Hardware Description Languages (HDLs). In this paper we introduce Yak, a new dataflow description language for asynchronous bundled data circuits. Yak allows designers to generate Verilog and timing constraints automatically, from a textual description of bundled data control flow structures and combinational logic blocks. The timing constraints are generated using the Local Clock Set methodology and can be consumed by standard industry tools. Yak includes ergonomic language features such as structured bindings of channels undergoing fork and join operations, named value scope propagation along channels, and channel typing. Here we present Yak's language front-end and compare the automated synthesis and layout results of an example circuit with a manual constraint specification approach.

Our work presents a novel spectrum-inspired learning-based approach for generating clothing deformations with dynamic effects and personalized details. Existing methods in the field of clothing animation are limited to either static behavior or specific network models for individual garments, which hinders their applicability in real-world scenarios where diverse animated garments are required. Our proposed method overcomes these limitations by providing a unified framework that predicts dynamic behavior for different garments with arbitrary topology and looseness, resulting in versatile and realistic deformations. First, we observe that the problem of bias towards low frequency always hampers supervised learning and leads to overly smooth deformations. To address this issue, we introduce a frequency-control strategy from a spectral perspective that enhances the generation of high-frequency details of the deformation. In addition, to make the network highly generalizable and able to learn various clothing deformations effectively, we propose a spectral descriptor to achieve a generalized description of the global shape information. Building on the above strategies, we develop a dynamic clothing deformation estimator that integrates frequency-controllable attention mechanisms with long short-term memory. The estimator takes as input expressive features from garments and human bodies, allowing it to automatically output continuous deformations for diverse clothing types, independent of mesh topology or vertex count. Finally, we present a neural collision handling method to further enhance the realism of garments. Our experimental results demonstrate the effectiveness of our approach on a variety of free-swinging garments and its superiority over state-of-the-art methods.

Intrusion detection systems (IDSs) built on artificial intelligence (AI) are presented as latent mechanisms for actively detecting fresh attacks over a complex network. Although review papers are used the systematic review or simple methods to analyse and criticize the anomaly NIDS works, the current review uses a traditional way as a quantitative description to find current gaps by synthesizing and summarizing the data comparison without considering algorithms performance. This paper presents a systematic and meta-analysis study of AI for network intrusion detection systems (NIDS) focusing on deep learning (DL) and machine learning (ML) approaches in network security. Deep learning algorithms are explained in their structure, and data intrusion network is justified based on an infrastructure of networks and attack types. By conducting a meta-analysis and debating the validation of the DL and ML approach by effectiveness, used dataset, detected attacks, classification task, and time complexity, we offer a thorough benchmarking assessment of the current NIDS-based publications-based systematic approach. The proposed method is considered reviewing works for the anomaly-based network intrusion detection system (anomaly-NIDS) models. Furthermore, the effectiveness of proposed algorithms and selected datasets are discussed for the recent direction and improvements of ML and DL to the NIDS. The future trends for improving an anomaly-IDS for continuing detection in the evolution of cyberattacks are highlighted in several research studies.

We present a novel ML framework for modeling the wavelength-dependent gain of multiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy transfer-learning even when operated across different amplifier types.

Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors.

This paper presents the development of a software tool that enables the translation of first-order predicate logic into relation algebra. The tool was developed using the Z3 theorem prover, by leveraging its capabilities to enhance reliability, generate code, and expedite the development process. The resulting standalone Python program allows users to translate first-order logic expressions into relation algebra, eliminating the need to work with relation algebra explicitly. This paper outlines the theoretical background of first-order logic, relation algebra, and the translation process. It also describes the implementation details, including validation of the tool using Z3 for testing correctness, and discusses deviations from the original translation procedure. By demonstrating the feasibility of utilizing first-order logic as an alternative language for expressing relation algebra, this tool paves the way for integrating first-order logic into tools that traditionally rely on relation algebra as their input language.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

北京阿比特科技有限公司