亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cognitive biases exert a significant influence on human thinking and decision-making. In order to identify how they influence the occurrence of architectural technical debt, a series of semi-structured interviews with software architects was performed. The results show which classes of architectural technical debt originate from cognitive biases, and reveal the antecedents of technical debt items (classes) through biases. This way, we analysed how and when cognitive biases lead to the creation of technical debt. We also identified a set of debiasing techniques that can be used in order to prevent the negative influence of cognitive biases. The observations of the role of organisational culture in the avoidance of inadvertent technical debt throw a new light on that issue.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Systems of competing agents can often be modeled as games. Assuming rationality, the most likely outcomes are given by an equilibrium (e.g. a Nash equilibrium). In many practical settings, games are influenced by context, i.e. additional data beyond the control of any agent (e.g. weather for traffic and fiscal policy for market economies). Often the exact game mechanics are unknown, yet vast amounts of historical data consisting of (context, equilibrium) pairs are available, raising the possibility of learning a solver which predicts the equilibria given only the context. We introduce Nash Fixed Point Networks (N-FPNs), a class of neural networks that naturally output equilibria. Crucially, N- FPNs employ a constraint decoupling scheme to handle complicated agent action sets while avoiding expensive projections. Empirically, we find N-FPNs are compatible with the recently developed Jacobian-Free Backpropagation technique for training implicit networks, making them significantly faster and easier to train than prior models. Our experiments show N-FPNs are capable of scaling to problems orders of magnitude larger than existing learned game solvers.

Large language models have astounded the world with fascinating new capabilities. However, they currently lack the ability to teach themselves new skills, relying instead on large amounts of human-generated training data. We introduce SECToR (Self-Education via Chain-of-Thought Reasoning), a proof-of-concept demonstration that language models can teach themselves new skills using chain-of-thought reasoning. During the self-learning loop, SECToR asks models to solve addition problems using chain-of-thought reasoning before training the next version of the model to solve those same problems directly without using such reasoning. This process often results in an improved model which can, when again augmented with chain-of-thought reasoning, solve even harder problems than the original model, allowing the self-learning loop to continue. Language models trained via SECToR autonomously learn to add up to the longest-length-digit numbers without access to any ground truth examples beyond an initial supervised fine-tuning phase consisting only of numbers with 6 or fewer digits. Our central hypothesis is that chain-of-thought reasoning can act as a policy improvement operator, similarly to how Monte-Carlo Tree Search is used in AlphaZero (Silver et al., 2017). We hope that this research can lead to new directions in which language models can learn to teach themselves without the need for human demonstrations.

Line attributes such as width and dashing are commonly used to encode information. However, many questions on the perception of line attributes remain, such as how many levels of attribute variation can be distinguished or which line attributes are the preferred choices for which tasks. We conducted three studies to develop guidelines for using stylized lines to encode scalar data. In our first study, participants drew stylized lines to encode uncertainty information. Uncertainty is usually visualized alongside other data. Therefore, alternative visual channels are important for the visualization of uncertainty. Additionally, uncertainty -- e.g., in weather forecasts -- is a familiar topic to most people. Thus, we picked it for our visualization scenarios in study 1. We used the results of our study to determine the most common line attributes for drawing uncertainty: Dashing, luminance, wave amplitude, and width. While those line attributes were especially common for drawing uncertainty, they are also commonly used in other areas. In studies 2 and 3, we investigated the discriminability of the line attributes determined in study 1. Studies 2 and 3 did not require specific application areas; thus, their results apply to visualizing any scalar data in line attributes. We evaluated the just-noticeable differences (JND) and derived recommendations for perceptually distinct line levels. We found that participants could discriminate considerably more levels for the line attribute width than for wave amplitude, dashing, or luminance.

Although humans have five basic senses, sight, hearing, touch, smell, and taste, most multimedia systems in current systems only capture two of them, namely, sight and hearing. With the development of the metaverse and related technologies, there is a growing need for a more immersive media format that leverages all human senses. Multisensory media(Mulsemedia) that can stimulate multiple senses will play a critical role in the near future. This paper provides an overview of the history, background, use cases, existing research, devices, and standards of mulsemedia. Emerging mulsemedia technologies such as Extended Reality (XR) and Holographic-Type Communication (HTC) are introduced. Additionally, the challenges in mulsemedia research from the perspective of wireless communication and networking are discussed. The potential of 6G wireless systems to address these challenges is highlighted, and several research directions that can advance mulsemedia communications are identified.

Decision making via sequence modeling aims to mimic the success of language models, where actions taken by an embodied agent are modeled as tokens to predict. Despite their promising performance, it remains unclear if embodied sequence modeling leads to the emergence of internal representations that represent the environmental state information. A model that lacks abstract state representations would be liable to make decisions based on surface statistics which fail to generalize. We take the BabyAI environment, a grid world in which language-conditioned navigation tasks are performed, and build a sequence modeling Transformer, which takes a language instruction, a sequence of actions, and environmental observations as its inputs. In order to investigate the emergence of abstract state representations, we design a "blindfolded" navigation task, where only the initial environmental layout, the language instruction, and the action sequence to complete the task are available for training. Our probing results show that intermediate environmental layouts can be reasonably reconstructed from the internal activations of a trained model, and that language instructions play a role in the reconstruction accuracy. Our results suggest that many key features of state representations can emerge via embodied sequence modeling, supporting an optimistic outlook for applications of sequence modeling objectives to more complex embodied decision-making domains.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司