Documentation enables sharing knowledge between the developers of a technology and its users. Creating quality documents, however, is challenging: Documents must satisfy the needs of a large audience without being overwhelming for individuals. We address this challenge with a new document format, named Casdoc. Casdoc documents are interactive resources centered around code examples for programmers. Explanations of the code elements are presented as annotations that the readers reveal based on their needs. We evaluated Casdoc in a field study with over 300 participants who used 126 documents as part of a software design course. The majority of participants adopted Casdoc instead of a baseline format during the study. We observed that interactive documents can contain more information than static documents without being distracting to readers. We also gathered insights into five aspects of Casdoc that can be applied to other formats, and propose five guidelines to improve navigability in online documents.
We argue that insurance can act as an analogon for the social situatedness of machine learning systems, hence allowing machine learning scholars to take insights from the rich and interdisciplinary insurance literature. Tracing the interaction of uncertainty, fairness and responsibility in insurance provides a fresh perspective on fairness in machine learning. We link insurance fairness conceptions to their machine learning relatives, and use this bridge to problematize fairness as calibration. In this process, we bring to the forefront two themes that have been largely overlooked in the machine learning literature: responsibility and aggregate-individual tensions.
The assumption of independent subvectors arises in many aspects of multivariate analysis. In most real-world applications, however, we lack prior knowledge about the number of subvectors and the specific variables within each subvector. Yet, testing all these combinations is not feasible. For example, for a data matrix containing 15 variables, there are already 1 382 958 545 possible combinations. Given that zero correlation is a necessary condition for independence, independent subvectors exhibit a block diagonal covariance matrix. This paper focuses on the detection of such block diagonal covariance structures in high-dimensional data and therefore also identifies uncorrelated subvectors. Our nonparametric approach exploits the fact that the structure of the covariance matrix is mirrored by the structure of its eigenvectors. However, the true block diagonal structure is masked by noise in the sample case. To address this problem, we propose to use sparse approximations of the sample eigenvectors to reveal the sparse structure of the population eigenvectors. Notably, the right singular vectors of a data matrix with an overall mean of zero are identical to the sample eigenvectors of its covariance matrix. Using sparse approximations of these singular vectors instead of the eigenvectors makes the estimation of the covariance matrix obsolete. We demonstrate the performance of our method through simulations and provide real data examples. Supplementary materials for this article are available online.
Transformer-based models are becoming deeper and larger recently. For better scalability, an underlying training solution in industry is to split billions of parameters (tensors) into many tasks and then run them across homogeneous accelerators (e.g., GPUs). However, such dedicated compute cluster is prohibitively expensive in academia and moderate companies. An economic replacement is to aggregate existing heterogeneous devices and share resources among multi-tenants. Nevertheless, static hardware configurations and dynamic resource contention definitely cause straggling tasks, which heavily slows down the overall training efficiency. Existing works feature contributions mainly tailored for traditional data parallelism. They cannot work well for the new tensor parallelism due to strict communication and correctness constraints. In this paper we first present ZERO-resizing, a novel dynamic workload balancing technique without any data migration. We tune workloads in real-time by temporarily resizing matrices involved in core tensor-related computations. We particularly design data imputation and priority selection policies to respectively satisfy consistency constraint required by normal training and reduce the accuracy loss. We also give a lightweight data migration technique without loss of accuracy, to cope with heavy heterogeneity. Our final SEMI-migration solution is built on top of these two techniques and can adaptively distinguish their respective balancing missions, to achieve an overall success in efficiency and accuracy. Extensive experiments on the representative Colossal-AI platform validate the effectiveness of our proposals.
Location-based services (LBSs) in vehicular ad hoc networks (VANETs) offer users numerous conveniences. However, the extensive use of LBSs raises concerns about the privacy of users' trajectories, as adversaries can exploit temporal correlations between different locations to extract personal information. Additionally, users have varying privacy requirements depending on the time and location. To address these issues, this paper proposes a personalized trajectory privacy protection mechanism (PTPPM). This mechanism first uses the temporal correlation between trajectory locations to determine the possible location set for each time instant. We identify a protection location set (PLS) for each location by employing the Hilbert curve-based minimum distance search algorithm. This approach incorporates the complementary features of geo-indistinguishability and distortion privacy. We put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism. This mechanism generates fake locations with smaller perturbation distances while improving the balance between privacy and quality of service (QoS). Simulation results show that our mechanism outperforms the benchmark by providing enhanced privacy protection while meeting user's QoS requirements.
This paper introduces a new type of soft continuum robot, called SCoReS, which is capable of self-controlling continuously its curvature at the segment level; in contrast to previous designs which either require external forces or machine elements, or whose variable curvature capabilities are discrete -- depending on the number of locking mechanisms and segments. The ability to have a variable curvature, whose control is continuous and independent from external factors, makes a soft continuum robot more adaptive in constrained environments, similar to what is observed in nature in the elephant's trunk or ostrich's neck for instance which exhibit multiple curvatures. To this end, our soft continuum robot enables reconfigurable variable curvatures utilizing a variable stiffness growing spine based on micro-particle granular jamming for the first time. We detail the design of the proposed robot, presenting its modeling through beam theory and FEA simulation -- which is validated through experiments. The robot's versatile bending profiles are then explored in experiments and an application to grasp fruits at different configurations is demonstrated.
Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.