Recent constructions of the first asymptotically good quantum LDPC (qLDPC) codes led to two breakthroughs in complexity theory: the NLTS (No Low-Energy Trivial States) theorem (Anshu, Breuckmann, and Nirkhe, STOC'23), and explicit lower bounds against a linear number of levels of the Sum-of-Squares (SoS) hierarchy (Hopkins and Lin, FOCS'22). In this work, we obtain improvements to both of these results using qLDPC codes of low rate: - Whereas Anshu et al. only obtained NLTS Hamiltonians from qLDPC codes of linear dimension, we show the stronger result that qLDPC codes of arbitrarily small positive dimension yield NLTS Hamiltonians. - The SoS lower bounds of Hopkins and Lin are only weakly explicit because they require running Gaussian elimination to find a nontrivial codeword, which takes polynomial time. We resolve this shortcoming by introducing a new method of planting a strongly explicit nontrivial codeword in linear-distance qLDPC codes, which in turn yields strongly explicit SoS lower bounds. Our "planted" qLDPC codes may be of independent interest, as they provide a new way of ensuring a qLDPC code has positive dimension without resorting to parity check counting, and therefore provide more flexibility in the code construction.
Radial basis function generated finite-difference (RBF-FD) methods have recently gained popularity due to their flexibility with irregular node distributions. However, the convergence theories in the literature, when applied to nonuniform node distributions, require shrinking fill distance and do not take advantage of areas with high data density. Non-adaptive approach using same stencil size and degree of appended polynomial will have higher local accuracy at high density region, but has no effect on the overall order of convergence and could be a waste of computational power. This work proposes an adaptive RBF-FD method that utilizes the local data density to achieve a desirable order accuracy. By performing polynomial refinement and using adaptive stencil size based on data density, the adaptive RBF-FD method yields differentiation matrices with higher sparsity while achieving the same user-specified convergence order for nonuniform point distributions. This allows the method to better leverage regions with higher node density, maintaining both accuracy and efficiency compared to standard non-adaptive RBF-FD methods.
Synthetic ground motions (GMs) play a fundamental role in both deterministic and probabilistic seismic engineering assessments. This paper shows that the family of filtered and modulated white noise stochastic GM models overlooks a key parameter -- the high-pass filter's corner frequency, $f_c$. In the simulated motions, this causes significant distortions in the long-period range of the linear-response spectra and in the linear-response spectral correlations. To address this, we incorporate $f_c$ as an explicitly fitted parameter in a site-based stochastic model. We optimize $f_c$ by individually matching the long-period linear-response spectrum (i.e., $Sa(T)$ for $T \geq 1$s) of synthetic GMs with that of each recorded GM. We show that by fitting $f_c$ the resulting stochastically simulated GMs can precisely capture the spectral amplitudes, variability (i.e., variances of $\log(Sa(T))$), and the correlation structure (i.e., correlation of $\log(Sa(T))$ between distinct periods $T_1$ and $T_2$) of recorded GMs. To quantify the impact of $f_c$, a sensitivity analysis is conducted through linear regression. This regression relates the logarithmic linear-response spectrum ($\log(Sa(T))$) to seven GM parameters, including the optimized $f_c$. The results indicate that the variance of $f_c$ observed in natural GMs, along with its correlation with the other GM parameters, accounts for 26\% of the spectral variability in long periods. Neglecting either the $f_c$ variance or $f_c$ correlation typically results in an important overestimation of the linear-response spectral correlation.
We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}
Numerous analyses of reading time (RT) data have been implemented -- all in an effort to better understand the cognitive processes driving reading comprehension. However, data measured on words at the end of a sentence -- or even at the end of a clause -- is often omitted due to the confounding factors introduced by so-called "wrap-up effects," which manifests as a skewed distribution of RTs for these words. Consequently, the understanding of the cognitive processes that might be involved in these wrap-up effects is limited. In this work, we attempt to learn more about these processes by examining the relationship between wrap-up effects and information-theoretic quantities, such as word and context surprisals. We find that the distribution of information in prior contexts is often predictive of sentence- and clause-final RTs (while not of sentence-medial RTs). This lends support to several prior hypotheses about the processes involved in wrap-up effects.
sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.
Local discontinuous Galerkin methods are developed for solving second order and fourth order time-dependent partial differential equations defined on static 2D manifolds. These schemes are second-order accurate with surfaces triangulized by planar triangles and careful design of numerical fluxes. The schemes are proven to be energy stable. Various numerical experiments are provided to validate the new schemes.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.