亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce the quantum adaptive distribution search (QuADS), a quantum continuous optimization algorithm that integrates Grover adaptive search (GAS) with the covariance matrix adaptation - evolution strategy (CMA-ES), a classical technique for continuous optimization. QuADS utilizes the quantum-based search capabilities of GAS and enhances them with the principles of CMA-ES for more efficient optimization. It employs a multivariate normal distribution for the initial state of the quantum search and repeatedly updates it throughout the optimization process. Our numerical experiments show that QuADS outperforms both GAS and CMA-ES. This is achieved through adaptive refinement of the initial state distribution rather than consistently using a uniform state, resulting in fewer oracle calls. This study presents an important step toward exploiting the potential of quantum computing for continuous optimization.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.

In this paper, we study the perturbation analysis of a class of composite optimization problems, which is a very convenient and unified framework for developing both theoretical and algorithmic issues of constrained optimization problems. The underlying theme of this paper is very important in both theoretical and computational study of optimization problems. Under some mild assumptions on the objective function, we provide a definition of a strong second order sufficient condition (SSOSC) for the composite optimization problem and also prove that the following conditions are equivalent to each other: the SSOSC and the nondegeneracy condition, the nonsingularity of Clarke's generalized Jacobian of the nonsmooth system at a Karush-Kuhn-Tucker (KKT) point, and the strong regularity of the KKT point. These results provide an important way to characterize the stability of the KKT point. As for the convex composite optimization problem, which is a special case of the general problem, we establish the equivalence between the primal/dual second order sufficient condition and the dual/primal strict Robinson constraint qualification, the equivalence between the primal/dual SSOSC and the dual/primal nondegeneracy condition. Moreover, we prove that the dual nondegeneracy condition and the nonsingularity of Clarke's generalized Jacobian of the subproblem corresponding to the augmented Lagrangian method are also equivalent to each other. These theoretical results lay solid foundation for designing an efficient algorithm.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

We study discretizations of fractional fully nonlinear equations by powers of discrete Laplacians. Our problems are parabolic and of order $\sigma\in(0,2)$ since they involve fractional Laplace operators $(-\Delta)^{\sigma/2}$. They arise e.g.~in control and game theory as dynamic programming equations, and solutions are non-smooth in general and should be interpreted as viscosity solutions. Our approximations are realized as finite-difference quadrature approximations and are 2nd order accurate for all values of $\sigma$. The accuracy of previous approximations depend on $\sigma$ and are worse when $\sigma$ is close to $2$. We show that the schemes are monotone, consistent, $L^\infty$-stable, and convergent using a priori estimates, viscosity solutions theory, and the method of half-relaxed limits. We present several numerical examples.

In this paper, we tackle structure learning of Directed Acyclic Graphs (DAGs), with the idea of exploiting available prior knowledge of the domain at hand to guide the search of the best structure. In particular, we assume to know the topological ordering of variables in addition to the given data. We study a new algorithm for learning the structure of DAGs, proving its theoretical consistence in the limit of infinite observations. Furthermore, we experimentally compare the proposed algorithm to a number of popular competitors, in order to study its behavior in finite samples.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

We study the problem of distribution shift generally arising in machine-learning augmented hybrid simulation, where parts of simulation algorithms are replaced by data-driven surrogates. We first establish a mathematical framework to understand the structure of machine-learning augmented hybrid simulation problems, and the cause and effect of the associated distribution shift. We show correlations between distribution shift and simulation error both numerically and theoretically. Then, we propose a simple methodology based on tangent-space regularized estimator to control the distribution shift, thereby improving the long-term accuracy of the simulation results. In the linear dynamics case, we provide a thorough theoretical analysis to quantify the effectiveness of the proposed method. Moreover, we conduct several numerical experiments, including simulating a partially known reaction-diffusion equation and solving Navier-Stokes equations using the projection method with a data-driven pressure solver. In all cases, we observe marked improvements in simulation accuracy under the proposed method, especially for systems with high degrees of distribution shift, such as those with relatively strong non-linear reaction mechanisms, or flows at large Reynolds numbers.

In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.

High-frequency issues have been remarkably challenges in numerical methods for partial differential equations. In this paper, a learning based numerical method (LbNM) is proposed for Helmholtz equation with high frequency. The main novelty is using Tikhonov regularization method to stably learn the solution operator by utilizing relevant information especially the fundamental solutions. Then applying the solution operator to a new boundary input could quickly update the solution. Based on the method of fundamental solutions and the quantitative Runge approximation, we give the error estimate. This indicates interpretability and generalizability of the present method. Numerical results validates the error analysis and demonstrates the high-precision and high-efficiency features.

Intending to introduce a method for the topological analysis of fields, we present a pipeline that takes as an input a weighted and based chain complex, produces a tame epimorphic parametrized chain complex, and encodes it as a barcode of tagged intervals. We show how to apply this pipeline to the weighted and based chain complex of a gradient-like Morse-Smale vector field on a compact Riemannian manifold in both the smooth and discrete settings. Interestingly for computations, it turns out that there is an isometry between tame epimorphic parametrized chain complexes endowed with the interleaving distance and barcodes of tagged intervals endowed with the bottleneck distance. Concerning stability, we show that the map taking a generic enough gradient-like vector field to its barcode of tagged intervals is continuous. Finally, we prove that the barcode of any such vector field can be approximated by the barcode of a combinatorial version of it with arbitrary precision.

北京阿比特科技有限公司