亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we propose an extension of physics informed supervised learning strategies to parametric partial differential equations. Indeed, even if the latter are indisputably useful in many applications, they can be computationally expensive most of all in a real-time and many-query setting. Thus, our main goal is to provide a physics informed learning paradigm to simulate parametrized phenomena in a small amount of time. The physics information will be exploited in many ways, in the loss function (standard physics informed neural networks), as an augmented input (extra feature employment) and as a guideline to build an effective structure for the neural network (physics informed architecture). These three aspects, combined together, will lead to a faster training phase and to a more accurate parametric prediction. The methodology has been tested for several equations and also in an optimal control framework.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · MoDELS · Neural Networks · 模型構建 ·
2023 年 8 月 4 日

Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.

We discuss probabilistic neural networks for unsupervised learning with a fixed internal representation as models for machine understanding. Here understanding is intended as mapping data to an already existing representation which encodes an {\em a priori} organisation of the feature space. We derive the internal representation by requiring that it satisfies the principles of maximal relevance and of maximal ignorance about how different features are combined. We show that, when hidden units are binary variables, these two principles identify a unique model -- the Hierarchical Feature Model (HFM) -- which is fully solvable and provides a natural interpretation in terms of features. We argue that learning machines with this architecture enjoy a number of interesting properties, like the continuity of the representation with respect to changes in parameters and data, the possibility to control the level of compression and the ability to support functions that go beyond generalisation. We explore the behaviour of the model with extensive numerical experiments and argue that models where the internal representation is fixed reproduce a learning modality which is qualitatively different from that of more traditional models such as Restricted Boltzmann Machines.

The power of Clifford or, geometric, algebra lies in its ability to represent geometric operations in a concise and elegant manner. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into non-commutative multivectors. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the open-source Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.

This work focuses on solving super-linear stochastic differential equations (SDEs) involving different time scales numerically. Taking advantages of being explicit and easily implementable, a multiscale truncated Euler-Maruyama scheme is proposed for slow-fast SDEs with local Lipschitz coefficients. By virtue of the averaging principle, the strong convergence of its numerical solutions to the exact ones in pth moment is obtained. Furthermore, under mild conditions on the coefficients, the corresponding strong error estimate is also provided. Finally, two examples and some numerical simulations are given to verify the theoretical results.

In estimation of a normal mean matrix under the matrix quadratic loss, we develop a general formula for the matrix quadratic risk of orthogonally invariant estimators. The derivation is based on several formulas for matrix derivatives of orthogonally invariant functions of matrices. As an application, we calculate the matrix quadratic risk of a singular value shrinkage estimator motivated by Stein's proposal for improving on the Efron--Morris estimator 50 years ago.

We discuss applications of exact structures and relative homological algebra to the study of invariants of multiparameter persistence modules. This paper is mostly expository, but does contain a pair of novel results. Over finite posets, classical arguments about the relative projective modules of an exact structure make use of Auslander-Reiten theory. One of our results establishes a new adjunction which allows us to "lift" these arguments to certain infinite posets over which Auslander-Reiten theory is not available. We give several examples of this lifting, in particular highlighting the non-existence and existence of resolutions by upsets when working with finitely presentable representations of the plane and of the closure of the positive quadrant, respectively. We then restrict our attention to finite posets. In this setting, we discuss the relationship between the global dimension of an exact structure and the representation dimension of the incidence algebra of the poset. We conclude with our second novel contribution. This is an explicit description of the irreducible morphisms between relative projective modules for several exact structures which have appeared previously in the literature.

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the domain decomposition approach, we derive an optimal control problem, for which we present the convergence analysis. The snapshots for the high-fidelity model are obtained with the Finite Element discretisation, and the model order reduction is then proposed both in terms of time and physical parameters, with a standard POD-Galerkin projection. We test the proposed methodology on two fluid dynamics benchmarks: the non-stationary backward-facing step and lid-driven cavity flow. Finally, also in view of future works, we compare the intrusive POD--Galerkin approach with a non--intrusive approach based on Neural Networks.

An established normative approach for understanding the algorithmic basis of neural computation is to derive online algorithms from principled computational objectives and evaluate their compatibility with anatomical and physiological observations. Similarity matching objectives have served as successful starting points for deriving online algorithms that map onto neural networks (NNs) with point neurons and Hebbian/anti-Hebbian plasticity. These NN models account for many anatomical and physiological observations; however, the objectives have limited computational power and the derived NNs do not explain multi-compartmental neuronal structures and non-Hebbian forms of plasticity that are prevalent throughout the brain. In this article, we unify and generalize recent extensions of the similarity matching approach to address more complex objectives, including a large class of unsupervised and self-supervised learning tasks that can be formulated as symmetric generalized eigenvalue problems or nonnegative matrix factorization problems. Interestingly, the online algorithms derived from these objectives naturally map onto NNs with multi-compartmental neurons and local, non-Hebbian learning rules. Therefore, this unified extension of the similarity matching approach provides a normative framework that facilitates understanding multi-compartmental neuronal structures and non-Hebbian plasticity found throughout the brain.

We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is $\inf$--$\sup$ stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems, i.e., the set of controls being a Hilbert space, we obtain a coercive least-squares method and, in particular, quasi-optimality for any choice of discrete approximation space. For constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.

We propose a novel stochastic algorithm that randomly samples entire rows and columns of the matrix as a way to approximate an arbitrary matrix function. This contrasts with the "classical" Monte Carlo method which only works with one entry at a time, resulting in a significant better convergence rate than the "classical" approach. To assess the applicability of our method, we compute the subgraph centrality and total communicability of several large networks. In all benchmarks analyzed so far, the performance of our method was significantly superior to the competition, being able to scale up to 64 CPU cores with a remarkable efficiency.

北京阿比特科技有限公司