We revisit the problem of learning in two-player zero-sum Markov games, focusing on developing an algorithm that is uncoupled, convergent, and rational, with non-asymptotic convergence rates. We start from the case of stateless matrix game with bandit feedback as a warm-up, showing an $O(t^{-\frac{1}{8}})$ last-iterate convergence rate. To the best of our knowledge, this is the first result that obtains finite last-iterate convergence rate given access to only bandit feedback. We extend our result to the case of irreducible Markov games, providing a last-iterate convergence rate of $O(t^{-\frac{1}{9+\varepsilon}})$ for any $\varepsilon>0$. Finally, we study Markov games without any assumptions on the dynamics, and show a path convergence rate, which is a new notion of convergence we defined, of $O(t^{-\frac{1}{10}})$. Our algorithm removes the coordination and prior knowledge requirement of [Wei et al., 2021], which pursued the same goals as us for irreducible Markov games. Our algorithm is related to [Chen et al., 2021, Cen et al., 2021] and also builds on the entropy regularization technique. However, we remove their requirement of communications on the entropy values, making our algorithm entirely uncoupled.
In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To address this problem, we introduce a compression method based on knowledge distillation for this field, which largely reduces the number of parameters while preserving model performance as much as possible. Specifically, to enhance the capabilities of smaller models, we design a high-performing large model called Group Multi-view Vision Transformer (GMViT). In GMViT, the view-level ViT first establishes relationships between view-level features. Additionally, to capture deeper features, we employ the grouping module to enhance view-level features into group-level features. Finally, the group-level ViT aggregates group-level features into complete, well-formed 3D shape descriptors. Notably, in both ViTs, we introduce spatial encoding of camera coordinates as innovative position embeddings. Furthermore, we propose two compressed versions based on GMViT, namely GMViT-simple and GMViT-mini. To enhance the training effectiveness of the small models, we introduce a knowledge distillation method throughout the GMViT process, where the key outputs of each GMViT component serve as distillation targets. Extensive experiments demonstrate the efficacy of the proposed method. The large model GMViT achieves excellent 3D classification and retrieval results on the benchmark datasets ModelNet, ShapeNetCore55, and MCB. The smaller models, GMViT-simple and GMViT-mini, reduce the parameter size by 8 and 17.6 times, respectively, and improve shape recognition speed by 1.5 times on average, while preserving at least 90% of the classification and retrieval performance.
In general, Nash equilibria in normal-form games may require players to play (probabilistically) mixed strategies. We define a measure of the complexity of finite probability distributions and study the complexity required to play NEs in finite two player $n\times n$ games with rational payoffs. Our central results show that there exist games in which there is an exponential vs. linear gap in the complexity of the mixed distributions that the two players play at (the unique) NE. This gap induces gaps in the amount of space required to represent and sample from the corresponding distributions using known state-of-the-art sampling algorithms. We also establish upper and lower bounds on the complexity of any NE in the games that we study. These results highlight (i) the nontriviality of the assumption that players can any mixed strategy and (ii) the disparities in resources that players may require to play NEs in the games that we study.
With the widespread adoption of Large Language Models (LLMs), many deep learning practitioners are looking for strategies of running these models more efficiently. One such strategy is to use sparse Mixture-of-Experts (MoE) - a type of model architectures where only a fraction of model layers are active for any given input. This property allows MoE-based language models to generate tokens faster than their dense counterparts, but it also increases model size due to having multiple experts. Unfortunately, this makes state-of-the-art MoE language models difficult to run without high-end GPUs. In this work, we study the problem of running large MoE language models on consumer hardware with limited accelerator memory. We build upon parameter offloading algorithms and propose a novel strategy that accelerates offloading by taking advantage of innate properties of MoE LLMs. Using this strategy, we build can run Mixtral-8x7B with mixed quantization on desktop hardware and free-tier Google Colab instances.
With the rapid growth of online misinformation, it is crucial to have reliable fact-checking methods. Recent research on finding check-worthy claims and automated fact-checking have made significant advancements. However, limited guidance exists regarding the presentation of fact-checked content to effectively convey verified information to users. We address this research gap by exploring the critical design elements in fact-checking reports and investigating whether credibility and presentation-based design improvements can enhance users' ability to interpret the report accurately. We co-developed potential content presentation strategies through a workshop involving fact-checking professionals, communication experts, and researchers. The workshop examined the significance and utility of elements such as veracity indicators and explored the feasibility of incorporating interactive components for enhanced information disclosure. Building on the workshop outcomes, we conducted an online experiment involving 76 crowd workers to assess the efficacy of different design strategies. The results indicate that proposed strategies significantly improve users' ability to accurately interpret the verdict of fact-checking articles. Our findings underscore the critical role of effective presentation of fact reports in addressing the spread of misinformation. By adopting appropriate design enhancements, the effectiveness of fact-checking reports can be maximized, enabling users to make informed judgments.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.
We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which visual data are provided. The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from familiar classes to describe the unfamiliar class. In this paper, we build upon the recently introduced Graph Convolutional Network (GCN) and propose an approach that uses both semantic embeddings and the categorical relationships to predict the classifiers. Given a learned knowledge graph (KG), our approach takes as input semantic embeddings for each node (representing visual category). After a series of graph convolutions, we predict the visual classifier for each category. During training, the visual classifiers for a few categories are given to learn the GCN parameters. At test time, these filters are used to predict the visual classifiers of unseen categories. We show that our approach is robust to noise in the KG. More importantly, our approach provides significant improvement in performance compared to the current state-of-the-art results (from 2 ~ 3% on some metrics to whopping 20% on a few).