Given a positive integer $d$, the d-CUT is the problem of deciding if an undirected graph $G=(V,E)$ has a cut $(A,B)$ such that every vertex in $A$ (resp. $B$) has at most $d$ neighbors in $B$ (resp. $A$). For $d=1$, the problem is referred to as MATCHING CUT. Gomes and Sau, in IPEC 2019, gave the first fixed parameter tractable algorithm for d-CUT parameterized by maximum number of the crossing edges in the cut (i.e. the size of edge cut). However, their paper doesn't provide an explicit bound on the running time, as it indirectly relies on a MSOL formulation and Courcelle's Theorem. Motivated by this, we design and present an FPT algorithm for d-CUT for general graphs with running time $2^{O(k\log k)}n^{O(1)}$ where $k$ is the maximum size of the edge cut. This is the first FPT algorithm for the d-CUT and MATCHING CUT with an explicit dependence on this parameter. We also observe that there is no algorithm solving MATCHING CUT in time $2^{o(k)}n^{O(1)}$ where $k$ is the maximum size of the edge cut unless ETH fails.
It is a notorious open question whether integer programs (IPs), with an integer coefficient matrix $M$ whose subdeterminants are all bounded by a constant $\Delta$ in absolute value, can be solved in polynomial time. We answer this question in the affirmative if we further require that, by removing a constant number of rows and columns from $M$, one obtains a submatrix $A$ that is the transpose of a network matrix. Our approach focuses on the case where $A$ arises from $M$ after removing $k$ rows only, where $k$ is a constant. We achieve our result in two main steps, the first related to the theory of IPs and the second related to graph minor theory. First, we derive a strong proximity result for the case where $A$ is a general totally unimodular matrix: Given an optimal solution of the linear programming relaxation, an optimal solution to the IP can be obtained by finding a constant number of augmentations by circuits of $[A\; I]$. Second, for the case where $A$ is transpose of a network matrix, we reformulate the problem as a maximum constrained integer potential problem on a graph $G$. We observe that if $G$ is $2$-connected, then it has no rooted $K_{2,t}$-minor for $t = \Omega(k \Delta)$. We leverage this to obtain a tree-decomposition of $G$ into highly structured graphs for which we can solve the problem locally. This allows us to solve the global problem via dynamic programming.
Given a graph $G(V,E)$, a vertex subset $S$ of $G$ is called an open packing in $G$ if no pair of distinct vertices in $S$ have a common neighbour in $G$. The size of a largest open packing in $G$ is called the open packing number, $\rho^o(G)$, of $G$. It would be interesting to note that the open packing number is a lower bound for the total domination number in graphs with no isolated vertices [Henning and Slater, 1999]. Given a graph $G$ and a positive integer $k$, the decision problem OPEN PACKING tests whether $G$ has an open packing of size at least $k$. The optimization problem MAX-OPEN PACKING takes a graph $G$ as input and finds the open packing number of $G$. It is known that OPEN PACKING is NP-complete on split graphs (i.e., $\{2K_2,C_4,C_5\}$-free graphs) [Ramos et al., 2014]. In this work, we complete the study on the complexity (P vs NPC) of OPEN PACKING on $H$-free graphs for every graph $H$ with at least three vertices by proving that OPEN PACKING is (i) NP-complete on $K_{1,3}$-free graphs and (ii) polynomial time solvable on $(P_4\cup rK_1)$-free graphs for every $r\geq 1$. In the course of proving (ii), we show that for every $t\in {2,3,4}$ and $r\geq 1$, if G is a $(P_t\cup rK_1)$-free graph, then $\rho^o(G)$ is bounded above by a linear function of $r$. Moreover, we show that OPEN PACKING parameterized by solution size is W[1]-complete on $K_{1,3}$-free graphs and MAX-OPEN PACKING is hard to approximate within a factor of $n^{(\frac{1}{2}-\delta)}$ for any $\delta>0$ on $K_{1,3}$-free graphs unless P=NP. Further, we prove that OPEN PACKING is (a) NP-complete on $K_{1,4}$-free split graphs and (b) polynomial time solvable on $K_{1,3}$-free split graphs. We prove a similar dichotomy result on split graphs with degree restrictions on the vertices in the independent set of the clique-independent set partition of the split graphs.
This paper addresses the problem of finding a minimum-cost $m$-state Markov chain $(S_0,\ldots,S_{m-1})$ in a large set of chains. The chains studied have a reward associated with each state. The cost of a chain is its "gain", i.e., its average reward under its stationary distribution. Specifically, for each $k=0,\ldots,m-1$ there is a known set ${\mathbb S}_k$ of type-$k$ states. A permissible Markov chain contains exactly one state of each type; the problem is to find a minimum-cost permissible chain. The original motivation was to find a cheapest binary AIFV-$m$ lossless code on a source alphabet of size $n$. Such a code is an $m$-tuple of trees, in which each tree can be viewed as a Markov Chain state. This formulation was then used to address other problems in lossless compression. The known solution techniques for finding minimum-cost Markov chains were iterative and ran in exponential time. This paper shows how to map every possible type-$k$ state into a type-$k$ hyperplane and then define a "Markov Chain Polytope" as the lower envelope of all such hyperplanes. Finding a minimum-cost Markov chain can then be shown to be equivalent to finding a "highest" point on this polytope. The local optimization procedures used in the previous iterative algorithms are shown to be separation oracles for this polytope. Since these were often polynomial time, an application of the Ellipsoid method immediately leads to polynomial time algorithms for these problems.
We prove that for any graph $G$ of maximum degree at most $\Delta$, the zeros of its chromatic polynomial $\chi_G(x)$ (in $\mathbb{C}$) lie inside the disc of radius $5.94 \Delta$ centered at $0$. This improves on the previously best known bound of approximately $6.91\Delta$. We also obtain improved bounds for graphs of high girth. We prove that for every $g$ there is a constant $K_g$ such that for any graph $G$ of maximum degree at most $\Delta$ and girth at least $g$, the zeros of its chromatic polynomial $\chi_G(x)$ lie inside the disc of radius $K_g \Delta$ centered at $0$, where $K_g$ is the solution to a certain optimization problem. In particular, $K_g < 5$ when $g \geq 5$ and $K_g < 4$ when $g \geq 25$ and $K_g$ tends to approximately $3.86$ as $g \to \infty$. Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph $G$ to the generating function of so-called broken-circuit-free forests in $G$. We also establish a zero-free disc for the generating function of all forests in $G$ (aka the partition function of the arboreal gas) which may be of independent interest.
We consider the k-outconnected directed Steiner tree problem (k-DST). Given a directed edge-weighted graph $G=(V,E,w)$, where $V=\{r\}\cup S \cup T$, and an integer $k$, the goal is to find a minimum cost subgraph of $G$ in which there are $k$ edge-disjoint $rt$-paths for every terminal $t\in T$. The problem is know to be NP-hard. Furthermore, the question on whether a polynomial time, subpolynomial approximation algorithm exists for $k$-DST was answered negatively by Grandoni et al. (2018), by proving an approximation hardness of $\Omega (|T|/\log |T|)$ under $NP\neq ZPP$. Inspired by modern day applications, we focus on developing efficient algorithms for $k$-DST in graphs where terminals have out-degree $0$, and furthermore constitute the vast majority in the graph. We provide the first approximation algorithm for $k$-DST on such graphs, in which the approximation ratio depends (primarily) on the size of $S$. We present a randomized algorithm that finds a solution of weight at most $\mathcal O(k|S|\log |T|)$ times the optimal weight, and with high probability runs in polynomial time.
The convex dimension of a $k$-uniform hypergraph is the smallest dimension $d$ for which there is an injective mapping of its vertices into $\mathbb{R}^d$ such that the set of $k$-barycenters of all hyperedges is in convex position. We completely determine the convex dimension of complete $k$-uniform hypergraphs, which settles an open question by Halman, Onn and Rothblum, who solved the problem for complete graphs. We also provide lower and upper bounds for the extremal problem of estimating the maximal number of hyperedges of $k$-uniform hypergraphs on $n$ vertices with convex dimension $d$. To prove these results, we restate them in terms of affine projections that preserve the vertices of the hypersimplex. More generally, we provide a full characterization of the projections that preserve its $i$-dimensional skeleton. In particular, we obtain a hypersimplicial generalization of the linear van Kampen-Flores theorem: for each $n$, $k$ and $i$ we determine onto which dimensions can the $(n,k)$-hypersimplex be linearly projected while preserving its $i$-skeleton. Our results have direct interpretations in terms of $k$-sets and $(i,j)$-partitions, and are closely related to the problem of finding large convexly independent subsets in Minkowski sums of $k$ point sets.
For distributions over discrete product spaces $\prod_{i=1}^n \Omega_i'$, Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that $k$-Glauber dynamics, which resamples a random subset of $k$ coordinates, mixes $k$ times faster in $\chi^2$-divergence, and assuming approximate tensorization of entropy, mixes $k$ times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model $\mu_{J,h}(x)\propto \exp(\frac1 2\left\langle x,Jx \right\rangle + \langle h,x\rangle)$ with $\|J\|<1-c$ (the regime where fast mixing is known), we show that we can implement each step of $\widetilde \Theta(n/\|J\|_F)$-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time $\widetilde O(\|J\|_F) = \widetilde O(\sqrt n)$. (2) For the mixed $p$-spin model at high enough temperature, we show that with high probability we can implement each step of $\widetilde \Theta(\sqrt n)$-Glauber dynamics efficiently and obtain running time $\widetilde O(\sqrt n)$.
For non-decreasing sequence of integers $S=(a_1,a_2, \dots, a_k)$, an $S$-packing coloring of $G$ is a partition of $V(G)$ into $k$ subsets $V_1,V_2,\dots,V_k$ such that the distance between any two distinct vertices $x,y \in V_i$ is at least $a_{i}+1$, $1\leq i\leq k$. We consider the $S$-packing coloring problem on subclasses of subcubic graphs: For $0\le i\le 3$, a subcubic graph $G$ is said to be $i$-saturated if every vertex of degree 3 is adjacent to at most $i$ vertices of degree 3. Furthermore, a vertex of degree 3 in a subcubic graph is called heavy if all its three neighbors are of degree 3, and $G$ is said to be $(3,i)$-saturated if every heavy vertex is adjacent to at most $i$ heavy vertices. We prove that every 1-saturated subcubic graph is $(1,1,3,3)$-packing colorable and $(1,2,2,2,2)$-packing colorable. We also prove that every $(3,0)$-saturated subcubic graph is $(1,2,2,2,2,2)$-packing colorable.
In the product $L_1\times L_2$ of two Kripke complete consistent logics, local tabularity of $L_1$ and $L_2$ is necessary for local tabularity of $L_1\times L_2$. However, it is not sufficient: the product of two locally tabular logics can be not locally tabular. We provide extra semantic and axiomatic conditions which give criteria of local tabularity of the product of two locally tabular logics. Then we apply them to identify new families of locally tabular products.
A $K_r$-factor of a graph $G$ is a collection of vertex disjoint $r$-cliques covering $V(G)$. We prove the following algorithmic version of the classical Hajnal--Szemer\'edi Theorem in graph theory, when $r$ is considered as a constant. Given $r, c, n\in \mathbb{N}$ such that $n\in r\mathbb N$, let $G$ be an $n$-vertex graph with minimum degree at least $(1-1/r)n - c$. Then there is an algorithm with running time $2^{c^{O(1)}} n^{O(1)}$ that outputs either a $K_r$-factor of $G$ or a certificate showing that none exists, namely, this problem is fixed-parameter tractable in $c$. On the other hand, it is known that if $c = n^{\varepsilon}$ for fixed $\varepsilon \in (0,1)$, the problem is \texttt{NP-C}. We indeed establish characterization theorems for this problem, showing that the existence of a $K_r$-factor is equivalent to the existence of certain class of $K_r$-tilings of size $o(n)$, whose existence can be searched by the color-coding technique developed by Alon--Yuster--Zwick.