Given a closed simple polygon $P$, we say two points $p,q$ see each other if the segment $pq$ is fully contained in $P$. The art gallery problem seeks a minimum size set $G\subset P$ of guards that sees $P$ completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods and is attributed to Sharir. As the art gallery problem is ER-complete, it seems unlikely to avoid algebraic methods, without additional assumptions. In this paper, we introduce the notion of vision stability. In order to describe vision stability consider an enhanced guard that can see "around the corner" by an angle of $\delta$ or a diminished guard whose vision is by an angle of $\delta$ "blocked" by reflex vertices. A polygon $P$ has vision stability $\delta$ if the optimal number of enhanced guards to guard $P$ is the same as the optimal number of diminished guards to guard $P$. We will argue that most relevant polygons are vision stable. We describe a one-shot vision stable algorithm that computes an optimal guard set for visionstable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision stable polygon. We implemented an iterative visionstable algorithm and show its practical performance is slower, but comparable with other state of the art algorithms. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord $c$ of a polygon, we denote by $n(c)$ the number of vertices visible from $c$. The chord-width of a polygon is the maximum $n(c)$ over all possible chords $c$. The set of vision stable polygons admits an FPT algorithm when parametrized by the chord-width. Furthermore, the one-shot algorithm runs in FPT time, when parameterized by the number of reflex vertices.
We study the problem of federated contextual combinatorial cascading bandits, where $|\mathcal{U}|$ agents collaborate under the coordination of a central server to provide tailored recommendations to the $|\mathcal{U}|$ corresponding users. Existing works consider either a synchronous framework, necessitating full agent participation and global synchronization, or assume user homogeneity with identical behaviors. We overcome these limitations by considering (1) federated agents operating in an asynchronous communication paradigm, where no mandatory synchronization is required and all agents communicate independently with the server, (2) heterogeneous user behaviors, where users can be stratified into $J \le |\mathcal{U}|$ latent user clusters, each exhibiting distinct preferences. For this setting, we propose a UCB-type algorithm with delicate communication protocols. Through theoretical analysis, we give sub-linear regret bounds on par with those achieved in the synchronous framework, while incurring only logarithmic communication costs. Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.
Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.
We study dynamic $(1-\epsilon)$-approximate rounding of fractional matchings -- a key ingredient in numerous breakthroughs in the dynamic graph algorithms literature. Our first contribution is a surprisingly simple deterministic rounding algorithm in bipartite graphs with amortized update time $O(\epsilon^{-1} \log^2 (\epsilon^{-1} \cdot n))$, matching an (unconditional) recourse lower bound of $\Omega(\epsilon^{-1})$ up to logarithmic factors. Moreover, this algorithm's update time improves provided the minimum (non-zero) weight in the fractional matching is lower bounded throughout. Combining this algorithm with novel dynamic \emph{partial rounding} algorithms to increase this minimum weight, we obtain several algorithms that improve this dependence on $n$. For example, we give a high-probability randomized algorithm with $\tilde{O}(\epsilon^{-1}\cdot (\log\log n)^2)$-update time against adaptive adversaries. (We use Soft-Oh notation, $\tilde{O}$, to suppress polylogarithmic factors in the argument, i.e., $\tilde{O}(f)=O(f\cdot \mathrm{poly}(\log f))$.) Using our rounding algorithms, we also round known $(1-\epsilon)$-decremental fractional bipartite matching algorithms with no asymptotic overhead, thus improving on state-of-the-art algorithms for the decremental bipartite matching problem. Further, we provide extensions of our results to general graphs and to maintaining almost-maximal matchings.
Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve, but that any constant-depth classical circuit with bounded fan-in cannot. They also pose the question: Can we achieve a similar proof of separation for an input-independent sampling task? In this paper, we show that the answer to this question is yes when the number of random input bits given to the classical circuit is bounded. We introduce a distribution $D_{n}$ over $\{0,1\}^n$ and construct a constant-depth uniform quantum circuit family $\{C_n\}_n$ such that $C_n$ samples from a distribution close to $D_{n}$ in total variation distance. For any $\delta < 1$ we also prove, unconditionally, that any classical circuit with bounded fan-in gates that takes as input $kn + n^\delta$ i.i.d. Bernouli random variables with entropy $1/k$ and produces output close to $D_{n}$ in total variation distance has depth $\Omega(\log \log n)$. This gives an unconditional proof that constant-depth quantum circuits can sample from distributions that can't be reproduced by constant-depth bounded fan-in classical circuits, even up to additive error. We also show a similar separation between constant-depth quantum circuits with advice and classical circuits with bounded fan-in and fan-out, but access to an unbounded number of i.i.d random inputs. The distribution $D_n$ and classical circuit lower bounds are inspired by work of Viola, in which he shows a different (but related) distribution cannot be sampled from approximately by constant-depth bounded fan-in classical circuits.
Martin-L\"{o}f type theory $\mathbf{MLTT}$ was extended by Setzer with the so-called Mahlo universe types. This extension is called $\mathbf{MLM}$ and was introduced to develop a variant of $\mathbf{MLTT}$ equipped with an analogue of a large cardinal. Another instance of constructive systems extended with an analogue of a large set was formulated in the context of Aczel's constructive set theory: $\mathbf{CZF}$. Rathjen, Griffor and Palmgren extended $\mathbf{CZF}$ with inaccessible sets of all transfinite orders. It is unknown whether this extension of $\mathbf{CZF}$ is directly interpretable by Mahlo universes. In particular, how to construct the transfinite hierarchy of inaccessible sets using the reflection property of the Mahlo universe in $\mathbf{MLM}$ is not well understood. We extend $\mathbf{MLM}$ further by adding the accessibility predicate to it and show that the above extension of $\mathbf{CZF}$ is directly interpretable in $\mathbf{MLM}$ using the accessibility predicate.
The crossing number of a graph $G$ is the minimum number of crossings in a drawing of $G$ in the plane. A rectilinear drawing of a graph $G$ represents vertices of $G$ by a set of points in the plane and represents each edge of $G$ by a straight-line segment connecting its two endpoints. The rectilinear crossing number of $G$ is the minimum number of crossings in a rectilinear drawing of $G$. By the crossing lemma, the crossing number of an $n$-vertex graph $G$ can be $O(n)$ only if $|E(G)|\in O(n)$. Graphs of bounded genus and bounded degree (B\"{o}r\"{o}czky, Pach and T\'{o}th, 2006) and in fact all bounded degree proper minor-closed families (Wood and Telle, 2007) have been shown to admit linear crossing number, with tight $\Theta(\Delta n)$ bound shown by Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008. Much less is known about rectilinear crossing number. It is not bounded by any function of the crossing number. We prove that graphs that exclude a single-crossing graph as a minor have the rectilinear crossing number $O(\Delta n)$. This dependence on $n$ and $\Delta$ is best possible. A single-crossing graph is a graph whose crossing number is at most one. Thus the result applies to $K_5$-minor-free graphs, for example. It also applies to bounded treewidth graphs, since each family of bounded treewidth graphs excludes some fixed planar graph as a minor. Prior to our work, the only bounded degree minor-closed families known to have linear rectilinear crossing number were bounded degree graphs of bounded treewidth (Wood and Telle, 2007), as well as, bounded degree $K_{3,3}$-minor-free graphs (Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008). In the case of bounded treewidth graphs, our $O(\Delta n)$ result is again tight and improves on the previous best known bound of $O(\Delta^2 n)$ by Wood and Telle, 2007 (obtained for convex geometric drawings).
In the $k$-Edit Circular Pattern Matching ($k$-Edit CPM) problem, we are given a length-$n$ text $T$, a length-$m$ pattern $P$, and a positive integer threshold $k$, and we are to report all starting positions of the substrings of $T$ that are at edit distance at most $k$ from some cyclic rotation of $P$. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented $O(nk^2)$-time and $O(nk \log^3 k)$-time solutions for the reporting and decision versions of $k$-Edit CPM, respectively. Here, we show that the reporting and decision versions of $k$-Edit CPM can be solved in $O(n+(n/m) k^6)$ time and $O(n+(n/m) k^5 \log^3 k)$ time, respectively, thus obtaining the first algorithms with a complexity of the type $O(n+(n/m) \mathrm{poly}(k))$ for this problem. Notably, our algorithms run in $O(n)$ time when $m=\Omega(k^6)$ and are superior to the previous respective solutions when $m=\omega(k^4)$. We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of $P$ in $T$, when $T$ is relatively short w.r.t. $P$. Roughly speaking, either the starting positions of approximate occurrences of rotations of $P$ form $O(k^4)$ intervals that can be computed efficiently, or some rotation of $P$ is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).
We investigate pseudo-polynomial time algorithms for Subset Sum. Given a multi-set $X$ of $n$ positive integers and a target $t$, Subset Sum asks whether some subset of $X$ sums to $t$. Bringmann proposes an $\tilde{O}(n + t)$-time algorithm [Bringmann SODA'17], and an open question has naturally arisen: can Subset Sum be solved in $O(n + w)$ time? Here $w$ is the maximum integer in $X$. We make a progress towards resolving the open question by proposing an $\tilde{O}(n + \sqrt{wt})$-time algorithm.
We consider the problem of finding ``dissimilar'' $k$ shortest paths from $s$ to $t$ in an edge-weighted directed graph $D$, where the dissimilarity is measured by the minimum pairwise Hamming distances between these paths. More formally, given an edge-weighted directed graph $D = (V, A)$, two specified vertices $s, t \in V$, and integers $d, k$, the goal of Dissimilar Shortest Paths is to decide whether $D$ has $k$ shortest paths $P_1, \dots, P_k$ from $s$ to $t$ such that $|A(P_i) \mathbin{\triangle} A(P_j)| \ge d$ for distinct $P_i$ and $P_j$. We design a deterministic algorithm to solve Dissimilar Shortest Paths with running time $2^{O(3^kdk^2)}n^{O(1)}$, that is, Dissimilar Shortest Paths is fixed-parameter tractable parameterized by $k + d$. To complement this positive result, we show that Dissimilar Shortest Paths is W[1]-hard when parameterized by only $k$ and paraNP-hard parameterized by $d$.
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of $n$ (possibly overlapping) $d$-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For $d=1$, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for $d$-dimensional hyperrectangles, polynomial time $(\log n)^{O(d)}$-approximation algorithms are known. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an $\Omega(n)$ lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis. Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple $(\log n)^{O(d)}$-competitive algorithm for $d$-dimensional hyperrectangles in this model, which runs in $\tilde{O_d}(n)$ time. Our approach also yields $(\log n)^{O(d)}$-competitive algorithms in the random-order model for more general objects such as $d$-dimensional fat objects and ellipsoids.