In the rapidly evolving field of healthcare and beyond, the integration of generative AI in Electronic Health Records (EHRs) represents a pivotal advancement, addressing a critical gap in current information extraction techniques. This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs) to efficiently extract entities from medical narratives and unstructured text generated throughout various phases of the patient hospital visit. By addressing the significant challenge of processing unstructured medical text, GAMedX leverages the capabilities of generative AI and LLMs for improved data extraction. Employing a unified approach, the methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon. The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98\%. This innovation enhances entity extraction, offering a scalable, cost-effective solution for automated forms filling from unstructured data. As a result, GAMedX streamlines the processing of unstructured narratives, and sets a new standard in NER applications, contributing significantly to theoretical and practical advancements beyond the medical technology sphere.
Large Language Models (LLMs) have the potential to revolutionize the Sixth Generation (6G) communication networks. However, current mainstream LLMs generally lack the specialized knowledge in telecom domain. In this paper, for the first time, we propose a pipeline to adapt any general purpose LLMs to a telecom-specific LLMs. We collect and build telecom-specific pre-train dataset, instruction dataset, preference dataset to perform continual pre-training, instruct tuning and alignment tuning respectively. Besides, due to the lack of widely accepted evaluation benchmarks in telecom domain, we extend existing evaluation benchmarks and proposed three new benchmarks, namely, Telecom Math Modeling, Telecom Open QnA and Telecom Code Tasks. These new benchmarks provide a holistic evaluation of the capabilities of LLMs including math modeling, Open-Ended question answering, code generation, infilling, summarization and analysis in telecom domain. Our fine-tuned LLM TelecomGPT outperforms state of the art (SOTA) LLMs including GPT-4, Llama-3 and Mistral in Telecom Math Modeling benchmark significantly and achieve comparable performance in various evaluation benchmarks such as TeleQnA, 3GPP technical documents classification, telecom code summary and generation and infilling.
Electromagnetic Inverse Scattering Problems (EISP) have gained wide applications in computational imaging. By solving EISP, the internal relative permittivity of the scatterer can be non-invasively determined based on the scattered electromagnetic fields. Despite previous efforts to address EISP, achieving better solutions to this problem has remained elusive, due to the challenges posed by inversion and discretization. This paper tackles those challenges in EISP via an implicit approach. By representing the scatterer's relative permittivity as a continuous implicit representation, our method is able to address the low-resolution problems arising from discretization. Further, optimizing this implicit representation within a forward framework allows us to conveniently circumvent the challenges posed by inverse estimation. Our approach outperforms existing methods on standard benchmark datasets. Project page: //luo-ziyuan.github.io/Imaging-Interiors
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs), such as GPT-4 and LLaMA-2, by identifying and mitigating their vulnerabilities through explainable analysis of prompt attacks. We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness and explore the embedded defense mechanisms in these models. Our approach is distinctive for its capacity to elucidate the reasons behind the generation of harmful responses by LLMs through an incremental counterfactual methodology. By organizing the prompt modification process into four incremental levels: (word, sentence, character, and a combination of character and word) we facilitate a thorough examination of the susceptibilities inherent to LLMs. The findings from our study not only provide counterfactual explanation insight but also demonstrate that our framework significantly enhances the effectiveness of attack prompts.
The use of trajectory data with abundant spatial-temporal information is pivotal in Intelligent Transport Systems (ITS) and various traffic system tasks. Location-Based Services (LBS) capitalize on this trajectory data to offer users personalized services tailored to their location information. However, this trajectory data contains sensitive information about users' movement patterns and habits, necessitating confidentiality and protection from unknown collectors. To address this challenge, privacy-preserving methods like K-anonymity and Differential Privacy have been proposed to safeguard private information in the dataset. Despite their effectiveness, these methods can impact the original features by introducing perturbations or generating unrealistic trajectory data, leading to suboptimal performance in downstream tasks. To overcome these limitations, we propose a Federated Variational AutoEncoder (FedVAE) approach, which effectively generates a new trajectory dataset while preserving the confidentiality of private information and retaining the structure of the original features. In addition, FedVAE leverages Variational AutoEncoder (VAE) to maintain the original feature space and generate new trajectory data, and incorporates Federated Learning (FL) during the training stage, ensuring that users' data remains locally stored to protect their personal information. The results demonstrate its superior performance compared to other existing methods, affirming FedVAE as a promising solution for enhancing data privacy and utility in location-based applications.
In recent years, the rise of Large Language Models (LLMs) has spurred a growing demand for plug-and-play AI systems. Among the various AI techniques, prompt engineering stands out as particularly significant. However, users often face challenges in writing prompts due to the steep learning curve and significant time investment, and existing automatic prompt engineering (APE) models can be difficult to use. To address this issue, we propose PAS, an LLM-based plug-and-play APE system. PAS utilizes LLMs trained on high-quality, automatically generated prompt complementary datasets, resulting in exceptional performance. In comprehensive benchmarks, PAS achieves state-of-the-art (SoTA) results compared to previous APE models, with an average improvement of 6.09 points. Moreover, PAS is highly efficient, achieving SoTA performance with only 9000 data points. Additionally, PAS can autonomously generate prompt augmentation data without requiring additional human labor. Its flexibility also allows it to be compatible with all existing LLMs and applicable to a wide range of tasks. PAS excels in human evaluations, underscoring its suitability as a plug-in for users. This combination of high performance, efficiency, and flexibility makes PAS a valuable system for enhancing the usability and effectiveness of LLMs through improved prompt engineering.
Continual Learning (CL) is crucial for enabling networks to dynamically adapt as they learn new tasks sequentially, accommodating new data and classes without catastrophic forgetting. Diverging from conventional perspectives on CL, our paper introduces a new perspective wherein forgetting could actually benefit the sequential learning paradigm. Specifically, we present BiasPruner, a CL framework that intentionally forgets spurious correlations in the training data that could lead to shortcut learning. Utilizing a new bias score that measures the contribution of each unit in the network to learning spurious features, BiasPruner prunes those units with the highest bias scores to form a debiased subnetwork preserved for a given task. As BiasPruner learns a new task, it constructs a new debiased subnetwork, potentially incorporating units from previous subnetworks, which improves adaptation and performance on the new task. During inference, BiasPruner employs a simple task-agnostic approach to select the best debiased subnetwork for predictions. We conduct experiments on three medical datasets for skin lesion classification and chest X-Ray classification and demonstrate that BiasPruner consistently outperforms SOTA CL methods in terms of classification performance and fairness. Our code is available here.
Large Language Models (LLMs) gain substantial reasoning and decision-making capabilities from thought structures. However, existing methods such as Tree of Thought and Retrieval Augmented Thoughts often fall short in complex tasks due to the limitations of insufficient local retrieval of factual knowledge and inadequate global selection of strategies. These limitations make it challenging for these methods to balance factual accuracy and comprehensive logical optimization effectively. To address these limitations, we introduce the Retrieval Augmented Thought Tree (RATT), a novel thought structure that considers both overall logical soundness and factual correctness at each step of the thinking process. Specifically, at every point of a thought branch, RATT performs planning and lookahead to explore and evaluate multiple potential reasoning steps, and integrate the fact-checking ability of Retrieval-Augmented Generation (RAG) with LLM's ability to assess overall strategy. Through this combination of factual knowledge and strategic feasibility, the RATT adjusts and integrates the thought tree structure to search for the most promising branches within the search space. This thought structure significantly enhances the model's coherence in logical inference and efficiency in decision-making, and thus increases the limit of the capacity of LLM to generate reliable inferences and decisions based on thought structures. A broad range of experiments on different types of tasks showcases that the RATT structure significantly outperforms existing methods in factual correctness and logical coherence.
As the application of federated learning becomes increasingly widespread, the issue of imbalanced training data distribution has emerged as a significant challenge. Federated learning utilizes local data stored on different training clients for model training, rather than centralizing data on a server, thereby greatly enhancing the privacy and security of training data. However, the distribution of training data across different clients may be imbalanced, with different categories of data potentially residing on different clients. This presents a challenge to traditional federated learning, which assumes data distribution is independent and identically distributed (IID). This paper proposes a Blockchain-based Federated Learning Model for Non-IID Data (BFLN), which combines federated learning with blockchain technology. By introducing a new aggregation method and incentive algorithm, BFLN enhances the model performance of federated learning on non-IID data. Experiments on public datasets demonstrate that, compared to other state-of-the-art models, BFLN improves training accuracy and provides a sustainable incentive mechanism for personalized federated learning.
The potentials of Generative-AI technologies like Large Language models (LLMs) to revolutionize education are undermined by ethical considerations around their misuse which worsens the problem of academic dishonesty. LLMs like GPT-4 and Llama 2 are becoming increasingly powerful in generating sophisticated content and answering questions, from writing academic essays to solving complex math problems. Students are relying on these LLMs to complete their assignments and thus compromising academic integrity. Solutions to detect LLM-generated text are compute-intensive and often lack generalization. This paper presents a novel approach for detecting LLM-generated AI-text using a visual representation of word embedding. We have formulated a novel Convolutional Neural Network called ZigZag ResNet, as well as a scheduler for improving generalization, named ZigZag Scheduler. Through extensive evaluation using datasets of text generated by six different state-of-the-art LLMs, our model demonstrates strong intra-domain and inter-domain generalization capabilities. Our best model detects AI-generated text with an impressive average detection rate (over inter- and intra-domain test data) of 88.35%. Through an exhaustive ablation study, our ZigZag ResNet and ZigZag Scheduler provide a performance improvement of nearly 4% over the vanilla ResNet. The end-to-end inference latency of our model is below 2.5ms per sentence. Our solution offers a lightweight, computationally efficient, and faster alternative to existing tools for AI-generated text detection, with better generalization performance. It can help academic institutions in their fight against the misuse of LLMs in academic settings. Through this work, we aim to contribute to safeguarding the principles of academic integrity and ensuring the trustworthiness of student work in the era of advanced LLMs.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.