亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forecasting and forecast evaluation are inherently sequential tasks. Predictions are often issued on a regular basis, such as every hour, day, or month, and their quality is monitored continuously. However, the classical statistical tools for forecast evaluation are static, in the sense that statistical tests for forecast calibration are only valid if the evaluation period is fixed in advance. Recently, e-values have been introduced as a new, dynamic method for assessing statistical significance. An e-value is a non-negative random variable with expected value at most one under a null hypothesis. Large e-values give evidence against the null hypothesis, and the multiplicative inverse of an e-value is a conservative p-value. E-values are particularly suitable for sequential forecast evaluation, since they naturally lead to statistical tests which are valid under optional stopping. This article proposes e-values for testing probabilistic calibration of forecasts, which is one of the most important notions of calibration. The proposed methods are also more generally applicable for sequential goodness-of-fit testing. We demonstrate that the e-values are competitive in terms of power when compared to extant methods, which do not allow sequential testing. Furthermore, they provide important and useful insights in the evaluation of probabilistic weather forecasts.

相關內容

Comparative evaluation of forecasts of statistical functionals relies on comparing averaged losses of competing forecasts after the realization of the quantity $Y$, on which the functional is based, has been observed. Motivated by high-frequency finance, in this paper we investigate how proxies $\tilde Y$ for $Y$ - say volatility proxies - which are observed together with $Y$ can be utilized to improve forecast comparisons. We extend previous results on robustness of loss functions for the mean to general moments and ratios of moments, and show in terms of the variance of differences of losses that using proxies will increase the power in comparative forecast tests. These results apply both to testing conditional as well as unconditional dominance. Finally, we numerically illustrate the theoretical results, both for simulated high-frequency data as well as for high-frequency log returns of several cryptocurrencies.

In bandit multiple hypothesis testing, each arm corresponds to a different null hypothesis that we wish to test, and the goal is to design adaptive algorithms that correctly identify large set of interesting arms (true discoveries), while only mistakenly identifying a few uninteresting ones (false discoveries). One common metric in non-bandit multiple testing is the false discovery rate (FDR). We propose a unified, modular framework for bandit FDR control that emphasizes the decoupling of exploration and summarization of evidence. We utilize the powerful martingale-based concept of "e-processes" to ensure FDR control for arbitrary composite nulls, exploration rules and stopping times in generic problem settings. In particular, valid FDR control holds even if the reward distributions of the arms could be dependent, multiple arms may be queried simultaneously, and multiple (cooperating or competing) agents may be querying arms, covering combinatorial semi-bandit type settings as well. Prior work has considered in great detail the setting where each arm's reward distribution is independent and sub-Gaussian, and a single arm is queried at each step. Our framework recovers matching sample complexity guarantees in this special case, and performs comparably or better in practice. For other settings, sample complexities will depend on the finer details of the problem (composite nulls being tested, exploration algorithm, data dependence structure, stopping rule) and we do not explore these; our contribution is to show that the FDR guarantee is clean and entirely agnostic to these details.

Variable importance measures are the main tools to analyze the black-box mechanisms of random forests. Although the mean decrease accuracy (MDA) is widely accepted as the most efficient variable importance measure for random forests, little is known about its statistical properties. In fact, the exact MDA definition varies across the main random forest software. In this article, our objective is to rigorously analyze the behavior of the main MDA implementations. Consequently, we mathematically formalize the various implemented MDA algorithms, and then establish their limits when the sample size increases. In particular, we break down these limits in three components: the first one is related to Sobol indices, which are well-defined measures of a covariate contribution to the response variance, widely used in the sensitivity analysis field, as opposed to thethird term, whose value increases with dependence within covariates. Thus, we theoretically demonstrate that the MDA does not target the right quantity when covariates are dependent, a fact that has already been noticed experimentally. To address this issue, we define a new importance measure for random forests, the Sobol-MDA, which fixes the flaws of the original MDA. We prove the consistency of the Sobol-MDA and show thatthe Sobol-MDA empirically outperforms its competitors on both simulated and real data. An open source implementation in R and C++ is available online.

Multipoint evaluation is the computational task of evaluating a polynomial given as a list of coefficients at a given set of inputs. And while \emph{nearly linear time} algorithms have been known for the univariate instance of multipoint evaluation for close to five decades due to a work of Borodin and Moenck \cite{BM74}, fast algorithms for the multivariate version have been much harder to come by. In a significant improvement to the state of art for this problem, Umans \cite{Umans08} and Kedlaya \& Umans \cite{Kedlaya11} gave nearly linear time algorithms for this problem over field of small characteristic and over all finite fields respectively, provided that the number of variables $n$ is at most $d^{o(1)}$ where the degree of the input polynomial in every variable is less than $d$. They also stated the question of designing fast algorithms for the large variable case (i.e. $n \notin d^{o(1)}$) as an open problem. In this work, we show that there is a deterministic algorithm for multivariate multipoint evaluation over a field $\F_{q}$ of characteristic $p$ which evaluates an $n$-variate polynomial of degree less than $d$ in each variable on $N$ inputs in time $$\left((N + d^n)^{1 + o(1)}\text{poly}(\log q, d, p, n)\right)$$ provided that $p$ is at most $d^{o(1)}$, and $q$ is at most $(\exp(\exp(\exp(\cdots (\exp(d)))))$, where the height of this tower of exponentials is fixed. When the number of variables is large (e.g. $n \notin d^{o(1)}$), this is the first {nearly linear} time algorithm for this problem over any (large enough) field.Our algorithm is based on elementary algebraic ideas and this algebraic structure naturally leads to the applications to data structure upper bounds for polynomial evaluation and to an upper bound on the rigidity of Vandermonde matrices.

Accurate and trustworthy epidemic forecasting is an important problem that has impact on public health planning and disease mitigation. Most existing epidemic forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions. Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations; e.g. it is difficult to specify meaningful priors in Bayesian NNs, while methods like deep ensembling are computationally expensive in practice. In this paper, we fill this important gap. We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP, which directly models the probability density of the forecast value. EPIFNP leverages a dynamic stochastic correlation graph to model the correlations between sequences in a non-parametric way, and designs different stochastic latent variables to capture functional uncertainty from different perspectives. Our extensive experiments in a real-time flu forecasting setting show that EPIFNP significantly outperforms previous state-of-the-art models in both accuracy and calibration metrics, up to 2.5x in accuracy and 2.4x in calibration. Additionally, due to properties of its generative process,EPIFNP learns the relations between the current season and similar patterns of historical seasons,enabling interpretable forecasts. Beyond epidemic forecasting, the EPIFNP can be of independent interest for advancing principled uncertainty quantification in deep sequential models for predictive analytics

This article proposes omnibus portmanteau tests for contrasting adequacy of time series models. The test statistics are based on combining the autocorrelation function of the conditional residuals, the autocorrelation function of the conditional squared residuals, and the cross-correlation function between these residuals and their squares. The maximum likelihood estimator is used to derive the asymptotic distribution of the proposed test statistics under a general class of time series models, including ARMA, GARCH, and other nonlinear structures. An extensive Monte Carlo simulation study shows that the proposed tests successfully control the type I error probability and tend to have more power than other competitor tests in many scenarios. Two applications to a set of weekly stock returns for 92 companies from the S&P 500 demonstrate the practical use of the proposed tests.

We consider the problem of automated anomaly detection for building level heat load time series. An anomaly detection model must be applicable to a diverse group of buildings and provide robust results on heat load time series with low signal-to-noise ratios, several seasonalities, and significant exogenous effects. We propose to employ a probabilistic forecast combination approach based on an ensemble of deterministic forecasts in an anomaly detection scheme that classifies observed values based on their probability under a predictive distribution. We show empirically that forecast based anomaly detection provides improved accuracy when employing a forecast combination approach.

Quantile regression is an effective technique to quantify uncertainty, fit challenging underlying distributions, and often provide full probabilistic predictions through joint learnings over multiple quantile levels. A common drawback of these joint quantile regressions, however, is \textit{quantile crossing}, which violates the desirable monotone property of the conditional quantile function. In this work, we propose the Incremental (Spline) Quantile Functions I(S)QF, a flexible and efficient distribution-free quantile estimation framework that resolves quantile crossing with a simple neural network layer. Moreover, I(S)QF inter/extrapolate to predict arbitrary quantile levels that differ from the underlying training ones. Equipped with the analytical evaluation of the continuous ranked probability score of I(S)QF representations, we apply our methods to NN-based times series forecasting cases, where the savings of the expensive re-training costs for non-trained quantile levels is particularly significant. We also provide a generalization error analysis of our proposed approaches under the sequence-to-sequence setting. Lastly, extensive experiments demonstrate the improvement of consistency and accuracy errors over other baselines.

Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司