亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study addresses the challenge of bipedal navigation in a dynamic human-crowded environment, a research area that remains largely underexplored in the field of legged navigation. We propose two cascaded zonotope-based neural networks: a Pedestrian Prediction Network (PPN) for pedestrians' future trajectory prediction and an Ego-agent Social Network (ESN) for ego-agent social path planning. Representing future paths as zonotopes allows for efficient reachability-based planning and collision checking. The ESN is then integrated with a Model Predictive Controller (ESN-MPC) for footstep planning for our bipedal robot Digit designed by Agility Robotics. ESN-MPC solves for a collision-free optimal trajectory by optimizing through the gradients of ESN. ESN-MPC optimal trajectory is sent to the low-level controller for full-order simulation of Digit. The overall proposed framework is validated with extensive simulations on randomly generated initial settings with varying human crowd densities.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

3D occupancy, an advanced perception technology for driving scenarios, represents the entire scene without distinguishing between foreground and background by quantifying the physical space into a grid map. The widely adopted projection-first deformable attention, efficient in transforming image features into 3D representations, encounters challenges in aggregating multi-view features due to sensor deployment constraints. To address this issue, we propose our learning-first view attention mechanism for effective multi-view feature aggregation. Moreover, we showcase the scalability of our view attention across diverse multi-view 3D tasks, such as map construction and 3D object detection. Leveraging the proposed view attention as well as an additional multi-frame streaming temporal attention, we introduce ViewFormer, a vision-centric transformer-based framework for spatiotemporal feature aggregation. To further explore occupancy-level flow representation, we present FlowOcc3D, a benchmark built on top of existing high-quality datasets. Qualitative and quantitative analyses on this benchmark reveal the potential to represent fine-grained dynamic scenes. Extensive experiments show that our approach significantly outperforms prior state-of-the-art methods. The codes and benchmark will be released soon.

Training with noisy class labels impairs neural networks' generalization performance. In this context, mixup is a popular regularization technique to improve training robustness by making memorizing false class labels more difficult. However, mixup neglects that, typically, multiple annotators, e.g., crowdworkers, provide class labels. Therefore, we propose an extension of mixup, which handles multiple class labels per instance while considering which class label originates from which annotator. Integrated into our multi-annotator classification framework annot-mix, it performs superiorly to eight state-of-the-art approaches on eleven datasets with noisy class labels provided either by human or simulated annotators. Our code is publicly available through our repository at //github.com/ies-research/annot-mix.

In real-world scenarios, objects often require repositioning and reorientation before they can be grasped, a process known as pre-grasp manipulation. Learning universal dexterous functional pre-grasp manipulation requires precise control over the relative position, orientation, and contact between the hand and object while generalizing to diverse dynamic scenarios with varying objects and goal poses. To address this challenge, we propose a teacher-student learning approach that utilizes a novel mutual reward, incentivizing agents to optimize three key criteria jointly. Additionally, we introduce a pipeline that employs a mixture-of-experts strategy to learn diverse manipulation policies, followed by a diffusion policy to capture complex action distributions from these experts. Our method achieves a success rate of 72.6\% across more than 30 object categories by leveraging extrinsic dexterity and adjusting from feedback.

In this study, we propose a new approach to compute the majority vote (MV) function based on modulation on conjugate-reciprocal zeros (MOCZ) and introduce three different methods. The proposed methods rely on the fact that when a linear combination of polynomials is evaluated at one of the roots of a polynomial in the combination, that polynomial does contribute to the evaluation. To utilize this property, each transmitter maps the votes to the zeros of a Huffman polynomial, and the corresponding polynomial coefficients are transmitted. The receiver evaluates the polynomial constructed by the elements of the superposed sequence at conjugate-reciprocal zero pairs and detects the MV with a direct zero-testing (DiZeT) decoder. With differential and index-based encoders, we eliminate the need for power-delay information at the receiver while improving the computation error rate (CER) performance. The proposed methods do not use instantaneous channel state information at the transmitters and receiver. Thus, they provide robustness against phase and time synchronization errors. We theoretically analyze the CERs of the proposed methods. Finally, we demonstrate their efficacy in a distributed median computation scenario in a fading channel.

While extensive research has been conducted on high-dimensional data and on regression with left-censored responses, simultaneously addressing these complexities remains challenging, with only a few proposed methods available. In this paper, we utilize the Iterative Hard Thresholding (IHT) algorithm on the Tobit model in such a setting. Theoretical analysis demonstrates that our estimator converges with a near-optimal minimax rate. Additionally, we extend the method to a distributed setting, requiring only a few rounds of communication while retaining the estimation rate of the centralized version. Simulation results show that the IHT algorithm for the Tobit model achieves superior accuracy in predictions and subset selection, with the distributed estimator closely matching that of the centralized estimator. When applied to high-dimensional left-censored HIV viral load data, our method also exhibits similar superiority.

This paper studies an online optimal resource reservation problem in communication networks with job transfers where the goal is to minimize the reservation cost while maintaining the blocking cost under a certain budget limit. To tackle this problem, we propose a novel algorithm based on a randomized exponentially weighted method that encompasses long-term constraints. We then analyze the performance of our algorithm by establishing an upper bound for the associated regret and the cumulative constraint violations. Finally, we present numerical experiments where we compare the performance of our algorithm with those of reinforcement learning where we show that our algorithm surpasses it.

This article presents a deep reinforcement learning-based approach to tackle a persistent surveillance mission requiring a single unmanned aerial vehicle initially stationed at a depot with fuel or time-of-flight constraints to repeatedly visit a set of targets with equal priority. Owing to the vehicle's fuel or time-of-flight constraints, the vehicle must be regularly refueled, or its battery must be recharged at the depot. The objective of the problem is to determine an optimal sequence of visits to the targets that minimizes the maximum time elapsed between successive visits to any target while ensuring that the vehicle never runs out of fuel or charge. We present a deep reinforcement learning algorithm to solve this problem and present the results of numerical experiments that corroborate the effectiveness of this approach in comparison with common-sense greedy heuristics.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司