In this paper, we develop a posteriori error estimates for numerical approximations of scalar hyperbolic conservation laws in one space dimension. We develop novel quantitative partially $L^2$-type estimates by using the theory of shifts, and in particular, the framework for proving stability first developed in [Krupa-Vasseur. On uniqueness of solutions to conservation laws verifying a single entropy condition. J. Hyperbolic Differ. Equ., 2019]. In this paper, we solve two of the major obstacles to using the theory of shifts for quantitative estimates, including the change-of-variables problem and the loss of control on small shocks. Our methods have no inherit small-data limitations. Thus, our hope is to apply our techniques to the systems case to understand the numerical stability of large data. There is hope for our results to generalize to systems: the stability framework [Krupa-Vasseur. On uniqueness of solutions to conservation laws verifying a single entropy condition. J. Hyperbolic Differ. Equ., 2019] itself has been generalized to systems [Chen-Krupa-Vasseur. Uniqueness and weak-BV stability for $2\times 2$ conservation laws. Arch. Ration. Mech. Anal., 246(1):299--332, 2022]. Moreover, we are careful not to appeal to the Kruzhkov theory for scalar conservation laws. Instead, we work entirely within the context of the theory of shifts and $a$-contraction -- and these theories apply equally to systems. We present a MATLAB numerical implementation and numerical experiments. We also provide a brief introduction to the theory of shifts and $a$-contraction.
In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder. For a given function $f$ defined on the interval $[a,b]$, this formula is derived by introducing a linear combination of $f'$ computed at $n+1$ equally spaced points in $[a,b]$, together with $f''(a)$ and $f''(b)$. We then consider two classical applications of this Taylor-like expansion: the interpolation error and the numerical quadrature formula. We show that using this approach improves both the Lagrange $P_2$ - interpolation error estimate and the error bound of the Simpson rule in numerical integration.
Algorithms for solving the linear classification problem have a long history, dating back at least to 1936 with linear discriminant analysis. For linearly separable data, many algorithms can obtain the exact solution to the corresponding 0-1 loss classification problem efficiently, but for data which is not linearly separable, it has been shown that this problem, in full generality, is NP-hard. Alternative approaches all involve approximations of some kind, including the use of surrogates for the 0-1 loss (for example, the hinge or logistic loss) or approximate combinatorial search, none of which can be guaranteed to solve the problem exactly. Finding efficient algorithms to obtain an exact i.e. globally optimal solution for the 0-1 loss linear classification problem with fixed dimension, remains an open problem. In research we report here, we detail the rigorous construction of a new algorithm, incremental cell enumeration (ICE), that can solve the 0-1 loss classification problem exactly in polynomial time. We prove correctness using concepts from the theory of hyperplane arrangements and oriented matroids. We demonstrate the effectiveness of this algorithm on synthetic and real-world datasets, showing optimal accuracy both in and out-of-sample, in practical computational time. We also empirically demonstrate how the use of approximate upper bound leads to polynomial time run-time improvements to the algorithm whilst retaining exactness. To our knowledge, this is the first, rigorously-proven polynomial time, practical algorithm for this long-standing problem.
In this paper, we investigate the impact of compression on stochastic gradient algorithms for machine learning, a technique widely used in distributed and federated learning. We underline differences in terms of convergence rates between several unbiased compression operators, that all satisfy the same condition on their variance, thus going beyond the classical worst-case analysis. To do so, we focus on the case of least-squares regression (LSR) and analyze a general stochastic approximation algorithm for minimizing quadratic functions relying on a random field. We consider weak assumptions on the random field, tailored to the analysis (specifically, expected H\"older regularity), and on the noise covariance, enabling the analysis of various randomizing mechanisms, including compression. We then extend our results to the case of federated learning. More formally, we highlight the impact on the convergence of the covariance $\mathfrak{C}_{\mathrm{ania}}$ of the additive noise induced by the algorithm. We demonstrate despite the non-regularity of the stochastic field, that the limit variance term scales with $\mathrm{Tr}(\mathfrak{C}_{\mathrm{ania}} H^{-1})/K$ (where $H$ is the Hessian of the optimization problem and $K$ the number of iterations) generalizing the rate for the vanilla LSR case where it is $\sigma^2 \mathrm{Tr}(H H^{-1}) / K = \sigma^2 d / K$ (Bach and Moulines, 2013). Then, we analyze the dependency of $\mathfrak{C}_{\mathrm{ania}}$ on the compression strategy and ultimately its impact on convergence, first in the centralized case, then in two heterogeneous FL frameworks.
We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is $\inf$--$\sup$ stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems, i.e., the set of controls being a Hilbert space, we obtain a coercive least-squares method and, in particular, quasi-optimality for any choice of discrete approximation space. For constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.
In this paper we propose a geometric integrator to numerically approximate the flow of Lie systems. The highlight of this paper is to present a novel procedure that integrates the system on a Lie group intrinsically associated to the Lie system, and then generating the discrete solution of this Lie system through a given action of the Lie group on the manifold where the system evolves. One major result from the integration on the Lie group is that one is able to solve all automorphic Lie systems at the same time, and that they can be written as first-order systems of linear homogeneous ODEs in normal form. This brings a lot of advantages, since solving a linear ODE involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one based on the Magnus expansion, whereas the second is based on RKMK methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. As already mentioned, the milestone of this paper is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with nongeometric numerical methods.
In this paper, we develop a unified regression approach to model unconditional quantiles, M-quantiles and expectiles of multivariate dependent variables exploiting the multidimensional Huber's function. To assess the impact of changes in the covariates across the entire unconditional distribution of the responses, we extend the work of Firpo et al. (2009) by running a mean regression of the recentered influence function on the explanatory variables. We discuss the estimation procedure and establish the asymptotic properties of the derived estimators. A data-driven procedure is also presented to select the tuning constant of the Huber's function. The validity of the proposed methodology is explored with simulation studies and through an application using the Survey of Household Income and Wealth 2016 conducted by the Bank of Italy.
Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure from $m$ function values based on $\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1 < p < 2$ and $d$ is large. This effect is not present for isotropic Sobolev spaces.
In this paper, we propose a test procedure based on the LASSO methodology to test the global null hypothesis of no dependence between a response variable and $p$ predictors, where $n$ observations with $n < p$ are available. The proposed procedure is similar to the F-test for a linear model, which evaluates significance based on the ratio of explained to unexplained variance. However, the F-test is not suitable for models where $p \geq n$. This limitation is due to the fact that when $p \geq n$, the unexplained variance is zero and thus the F-statistic can no longer be calculated. In contrast, the proposed extension of the LASSO methodology overcomes this limitation by using the number of non-zero coefficients in the LASSO model as a test statistic after suitably specifying the regularization parameter. The method allows reliable analysis of high-dimensional datasets with as few as $n = 40$ observations. The performance of the method is tested by means of a power study.
We present a two-dimensional conforming virtual element method for the fourth-order phase-field equation. Our proposed numerical approach to the solution of this high-order phase-field (HOPF) equation relies on the design of an arbitrary-order accurate, virtual element space with $C^1$ global regularity. Such regularity is guaranteed by taking the values of the virtual element functions and their full gradient at the mesh vertices as degrees of freedom. Attaining high-order accuracy requires also edge polynomial moments of the trace of the virtual element functions and their normal derivatives. In this work, we detail the scheme construction, and prove its convergence by deriving error estimates in different norms. A set of representative test cases allows us to assess the behavior of the method.
In this paper, we consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints that require the minimizers across the network to lie in low-dimensional subspaces. This constrained formulation includes consensus or single-task optimization as special cases, and allows for more general task relatedness models such as multitask smoothness and coupled optimization. In order to cope with communication constraints, we propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates before communicating with their neighbors. The analysis shows that, under some general conditions on the quantization noise, and for sufficiently small step-sizes $\mu$, the strategy is stable both in terms of mean-square error and average bit rate: by reducing $\mu$, it is possible to keep the estimation errors small (on the order of $\mu$) without increasing indefinitely the bit rate as $\mu\rightarrow 0$. Simulations illustrate the theoretical findings and the effectiveness of the proposed approach, revealing that decentralized learning is achievable at the expense of only a few bits.