Technical Debt (TD) refers to non-optimal decisions made in software projects that may lead to short-term benefits, but potentially harm the system's maintenance in the long-term. Technical debt management (TDM) refers to a set of activities that are performed to handle TD, e.g., identification. These activities can entail tasks such as code and architectural analysis, which can be time-consuming if done manually. Thus, substantial research work has focused on automating TDM tasks (e.g., automatic identification of code smells). However, there is a lack of studies that summarize current approaches in TDM automation. This can hinder practitioners in selecting optimal automation strategies to efficiently manage TD. It can also prevent researchers from understanding the research landscape and addressing the research problems that matter the most. Thus, the main objective of this study is to provide an overview of the state of the art in TDM automation, analyzing the available tools, their use, and the challenges in automating TDM. For this, we conducted a systematic mapping study (SMS), and from an initial set of 1086 primary studies, 178 were selected to answer three research questions covering different facets of TDM automation. We found 121 automation artifacts, which were classified in 4 different types (i.e., tools, plugins, scripts, and bots); the inputs/outputs and interfaces were also collected and reported. Finally, a conceptual model is proposed that synthesizes the results and allows to discuss the current state of TDM automation and related challenges. The results show that the research community has investigated to a large extent how to perform various TDM activities automatically, considering the number of studies and automation artifacts we identified. More research is needed towards fully automated TDM, specially concerning the integration of the automation artifacts.
Multi-Access Edge Computing (MEC) emerged as a viable computing allocation method that facilitates offloading tasks to edge servers for efficient processing. The integration of MEC with 5G, referred to as 5G-MEC, provides real-time processing and data-driven decision-making in close proximity to the user. The 5G-MEC has gained significant recognition in task offloading as an essential tool for applications that require low delay. Nevertheless, few studies consider the dropped task ratio metric. Disregarding this metric might possibly undermine system efficiency. In this paper, the dropped task ratio and delay has been minimized in a realistic 5G-MEC task offloading scenario implemented in NS3. We utilize Mixed Integer Linear Programming (MILP) and Genetic Algorithm (GA) to optimize delay and dropped task ratio. We examined the effect of the number of tasks and users on the dropped task ratio and delay. Compared to two traditional offloading schemes, First Come First Serve (FCFS) and Shortest Task First (STF), our proposed method effectively works in 5G-MEC task offloading scenario. For MILP, the dropped task ratio and delay has been minimized by 20% and 2ms compared to GA.
Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.
Formal Modelling is often used as part of the design and testing process of software development to ensure that components operate within suitable bounds even in unexpected circumstances. In this paper, we use predictive formal modelling (PFM) at runtime in a human-swarm mission and show that this integration can be used to improve the performance of human-swarm teams. We recruited 60 participants to operate a simulated aerial swarm to deliver parcels to target locations. In the PFM condition, operators were informed of the estimated completion times given the number of drones deployed, whereas in the No-PFM condition, operators did not have this information. The operators could control the mission by adding or removing drones from the mission and thereby, increasing or decreasing the overall mission cost. The evaluation of human-swarm performance relied on four key metrics: the time taken to complete tasks, the number of agents involved, the total number of tasks accomplished, and the overall cost associated with the human-swarm task. Our results show that PFM modelling at runtime improves mission performance without significantly affecting the operator's workload or the system's usability.
Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
Interactive systems that facilitate exposure to examples can augment problem solving performance. However designers of such systems are often faced with many practical design decisions about how users will interact with examples, with little clear theoretical guidance. To understand how example interaction design choices affect whether/how people benefit from examples, we conducted an experiment where 182 participants worked on a controlled analog to an exploratory creativity task, with access to examples of varying diversity and presentation interfaces. Task performance was worse when examples were presented in a list, compared to contextualized in the exploration space or shown in a dropdown list. Example lists were associated with more fixation, whereas contextualized examples were associated with using examples to formulate a model of the problem space to guide exploration. We discuss implications of these results for a theoretical framework that maps design choices to fundamental psychological mechanisms of creative inspiration from examples.
Vision-Language Models (VLMs), pre-trained on large-scale datasets, have shown impressive performance in various visual recognition tasks. This advancement paves the way for notable performance in Zero-Shot Egocentric Action Recognition (ZS-EAR). Typically, VLMs handle ZS-EAR as a global video-text matching task, which often leads to suboptimal alignment of vision and linguistic knowledge. We propose a refined approach for ZS-EAR using VLMs, emphasizing fine-grained concept-description alignment that capitalizes on the rich semantic and contextual details in egocentric videos. In this paper, we introduce GPT4Ego, a straightforward yet remarkably potent VLM framework for ZS-EAR, designed to enhance the fine-grained alignment of concept and description between vision and language. Extensive experiments demonstrate GPT4Ego significantly outperforms existing VLMs on three large-scale egocentric video benchmarks, i.e., EPIC-KITCHENS-100 (33.2%, +9.4%), EGTEA (39.6%, +5.5%), and CharadesEgo (31.5%, +2.6%).
Large Language Models (LLMs), built upon Transformer-based architectures with massive pretraining on diverse data, have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, reveals intriguing parallels, especially in their shared optimization nature, black-box characteristics, and proficiency in handling complex problems. Meanwhile, EA can not only provide an optimization framework for LLM's further enhancement under black-box settings but also empower LLM with flexible global search and iterative mechanism in applications. On the other hand, LLM's abundant domain knowledge enables EA to perform smarter searches, while its text processing capability assist in deploying EA across various tasks. Based on their complementary advantages, this paper presents a comprehensive review and forward-looking roadmap, categorizing their mutual inspiration into LLM-enhanced evolutionary optimization and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in various application scenarios, including neural architecture search, code generation, software engineering, and text generation. As the first comprehensive review specifically focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding and harnessing the collaborative potential of LLMs and EAs. By presenting a comprehensive review, categorization, and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance to unlock the full potential of this innovative collaboration.
The robustness of critical infrastructure systems is contingent upon the integrity and transparency of their software supply chains. A Software Bill of Materials (SBOM) is pivotal in this regard, offering an exhaustive inventory of components and dependencies crucial to software development. However, prevalent challenges in SBOM sharing, such as data tampering risks and vendors' reluctance to fully disclose sensitive information, significantly hinder its effective implementation. These challenges pose a notable threat to the security of critical infrastructure and systems where transparency and trust are paramount, underscoring the need for a more secure and flexible mechanism for SBOM sharing. To bridge the gap, this study introduces a blockchain-empowered architecture for SBOM sharing, leveraging verifiable credentials to allow for selective disclosure. This strategy not only heightens security but also offers flexibility. Furthermore, this paper broadens the remit of SBOM to encompass AI systems, thereby coining the term AI Bill of Materials (AIBOM). The advent of AI and its application in critical infrastructure necessitates a nuanced understanding of AI software components, including their origins and interdependencies. The evaluation of our solution indicates the feasibility and flexibility of the proposed SBOM sharing mechanism, positing a solution for safeguarding (AI) software supply chains, which is essential for the resilience and reliability of modern critical infrastructure systems.
Background. Within the software industry, it is commonly estimated that software professionals invest a substantial portion of their work hours in the process of understanding existing systems. In this context, an ineffective technical onboarding process, which introduces newcomers to software under development, can result in a prolonged period for them to absorb the necessary knowledge required to become productive in their roles. Goal. The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools and how these tools are employed to facilitate the technical onboarding of new team members. Method. To address the research problem, we built upon the insights gained through the literature and embraced a sequential exploratory approach. This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews. Findings. Our findings demonstrate a gap between the concept of software visualization and the practical use of onboarding tools and techniques. Overall, practitioners do not systematically incorporate software visualization tools into their technical onboarding processes due to a lack of conceptual understanding and awareness of their potential benefits. Conclusion. The software industry could benefit from standardized and evolving onboarding models, improved by incorporating software visualization techniques and tools to support program comprehension of newcomers in the software projects.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.