亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biogenic Volatile Organic Compounds (BVOCs) emitted from the terrestrial ecosystem into the Earth's atmosphere are an important component of atmospheric chemistry. Due to the scarcity of measurement, a reliable enhancement of BVOCs emission maps can aid in providing denser data for atmospheric chemical, climate, and air quality models. In this work, we propose a strategy to super-resolve coarse BVOC emission maps by simultaneously exploiting the contributions of different compounds. To this purpose, we first accurately investigate the spatial inter-connections between several BVOC species. Then, we exploit the found similarities to build a Multi-Image Super-Resolution (MISR) system, in which a number of emission maps associated with diverse compounds are aggregated to boost Super-Resolution (SR) performance. We compare different configurations regarding the species and the number of joined BVOCs. Our experimental results show that incorporating BVOCs' relationship into the process can substantially improve the accuracy of the super-resolved maps. Interestingly, the best results are achieved when we aggregate the emission maps of strongly uncorrelated compounds. This peculiarity seems to confirm what was already guessed for other data-domains, i.e., joined uncorrelated information are more helpful than correlated ones to boost MISR performance. Nonetheless, the proposed work represents the first attempt in SR of BVOC emissions through the fusion of multiple different compounds.

相關內容

Purpose of Review: To effectively synthesise and analyse multi-robot behaviour, we require formal task-level models which accurately capture multi-robot execution. In this paper, we review modelling formalisms for multi-robot systems under uncertainty, and discuss how they can be used for planning, reinforcement learning, model checking, and simulation. Recent Findings: Recent work has investigated models which more accurately capture multi-robot execution by considering different forms of uncertainty, such as temporal uncertainty and partial observability, and modelling the effects of robot interactions on action execution. Other strands of work have presented approaches for reducing the size of multi-robot models to admit more efficient solution methods. This can be achieved by decoupling the robots under independence assumptions, or reasoning over higher level macro actions. Summary: Existing multi-robot models demonstrate a trade off between accurately capturing robot dependencies and uncertainty, and being small enough to tractably solve real world problems. Therefore, future research should exploit realistic assumptions over multi-robot behaviour to develop smaller models which retain accurate representations of uncertainty and robot interactions; and exploit the structure of multi-robot problems, such as factored state spaces, to develop scalable solution methods.

Image-to-image (I2I) translation comprises a wide spectrum of tasks. Here we divide this problem into three levels: strong-fidelity translation, normal-fidelity translation, and weak-fidelity translation, indicating the extent to which the content of the original image is preserved. Although existing methods achieve good performance in weak-fidelity translation, they fail to fully preserve the content in both strong- and normal-fidelity tasks, e.g. sim2real, style transfer and low-level vision. In this work, we propose Hierarchy Flow, a novel flow-based model to achieve better content preservation during translation. Specifically, 1) we first unveil the drawbacks of standard flow-based models when applied to I2I translation. 2) Next, we propose a new design, namely hierarchical coupling for reversible feature transformation and multi-scale modeling, to constitute Hierarchy Flow. 3) Finally, we present a dedicated aligned-style loss for a better trade-off between content preservation and stylization during translation. Extensive experiments on a wide range of I2I translation benchmarks demonstrate that our approach achieves state-of-the-art performance, with convincing advantages in both strong- and normal-fidelity tasks. Code and models will be at //github.com/WeichenFan/HierarchyFlow.

Continuous Ant-based Topology Search (CANTS) is a previously introduced novel nature-inspired neural architecture search (NAS) algorithm that is based on ant colony optimization (ACO). CANTS utilizes a continuous search space to indirectly-encode a neural architecture search space. Synthetic ant agents explore CANTS' continuous search space based on the density and distribution of pheromones, strongly inspired by how ants move in the real world. This continuous search space allows CANTS to automate the design of artificial neural networks (ANNs) of any size, removing a key limitation inherent to many current NAS algorithms that must operate within structures of a size that is predetermined by the user. This work expands CANTS by adding a fourth dimension to its search space representing potential neural synaptic weights. Adding this extra dimension allows CANTS agents to optimize both the architecture as well as the weights of an ANN without applying backpropagation (BP), which leads to a significant reduction in the time consumed in the optimization process: at least an average of 96% less time consumption with very competitive optimization performance, if not better. The experiments of this study - using real-world data - demonstrate that the BP-Free CANTS algorithm exhibits highly competitive performance compared to both CANTS and ANTS while requiring significantly less operation time.

Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in the practical applications of MT. In this paper, we first propose XLMRScore, which is a cross-lingual counterpart of BERTScore computed via the XLM-RoBERTa (XLMR) model. This metric can be used as a simple unsupervised QE method, while employing it results in two issues: firstly, the untranslated tokens leading to unexpectedly high translation scores, and secondly, the issue of mismatching errors between source and hypothesis tokens when applying the greedy matching in XLMRScore. To mitigate these issues, we suggest replacing untranslated words with the unknown token and the cross-lingual alignment of the pre-trained model to represent aligned words closer to each other, respectively. We evaluate the proposed method on four low-resource language pairs of WMT21 QE shared task, as well as a new English-Farsi test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming unsupervised rivals in all the low-resource language pairs for above 8%, on average.

In the last decades, people have been consuming and combining more drugs than before, increasing the number of Drug-Drug Interactions (DDIs). To predict unknown DDIs, recently, studies started incorporating Knowledge Graphs (KGs) since they are able to capture the relationships among entities providing better drug representations than using a single drug property. In this paper, we propose the medicX end-to-end framework that integrates several drug features from public drug repositories into a KG and embeds the nodes in the graph using various translation, factorisation and Neural Network (NN) based KG Embedding (KGE) methods. Ultimately, we use a Machine Learning (ML) algorithm that predicts unknown DDIs. Among the different translation and factorisation-based KGE models, we found that the best performing combination was the ComplEx embedding method with a Long Short-Term Memory (LSTM) network, which obtained an F1-score of 95.19% on a dataset based on the DDIs found in DrugBank version 5.1.8. This score is 5.61% better than the state-of-the-art model DeepDDI. Additionally, we also developed a graph auto-encoder model that uses a Graph Neural Network (GNN), which achieved an F1-score of 91.94%. Consequently, GNNs have demonstrated a stronger ability to mine the underlying semantics of the KG than the ComplEx model, and thus using higher dimension embeddings within the GNN can lead to state-of-the-art performance.

Various autonomous applications rely on recognizing specific known landmarks in their environment. For example, Simultaneous Localization And Mapping (SLAM) is an important technique that lays the foundation for many common tasks, such as navigation and long-term object tracking. This entails building a map on the go based on sensory inputs which are prone to accumulating errors. Recognizing landmarks in the environment plays a vital role in correcting these errors and further improving the accuracy of SLAM. The most popular choice of sensors for conducting SLAM today is optical sensors such as cameras or LiDAR sensors. These can use landmarks such as QR codes as a prerequisite. However, such sensors become unreliable in certain conditions, e.g., foggy, dusty, reflective, or glass-rich environments. Sonar has proven to be a viable alternative to manage such situations better. However, acoustic sensors also require a different type of landmark. In this paper, we put forward a method to detect the presence of bio-mimetic acoustic landmarks using support vector machines trained on the frequency bands of the reflecting acoustic echoes using an embedded real-time imaging sonar.

Event-based motion deblurring has shown promising results by exploiting low-latency events. However, current approaches are limited in their practical usage, as they assume the same spatial resolution of inputs and specific blurriness distributions. This work addresses these limitations and aims to generalize the performance of event-based deblurring in real-world scenarios. We propose a scale-aware network that allows flexible input spatial scales and enables learning from different temporal scales of motion blur. A two-stage self-supervised learning scheme is then developed to fit real-world data distribution. By utilizing the relativity of blurriness, our approach efficiently ensures the restored brightness and structure of latent images and further generalizes deblurring performance to handle varying spatial and temporal scales of motion blur in a self-distillation manner. Our method is extensively evaluated, demonstrating remarkable performance, and we also introduce a real-world dataset consisting of multi-scale blurry frames and events to facilitate research in event-based deblurring.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司