亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The purpose of this report is to explain how the textbook breadth-first search algorithm (BFS) can be modified in order to also create a compact representation of all shortest paths connecting a single source node to all the nodes reachable from it. From this representation, all these paths can also be efficiently enumerated. We then apply this algorithm to solve a similar problem in edge labelled graphs, where paths also have an additional restriction that their edge labels form a word belonging to a regular language. Namely, we solve the problem of evaluating regular path queries (RPQs) under the all-shortest paths semantics.

相關內容

In-Context Learning (ICL), which formulates target tasks as prompt completion conditioned on in-context demonstrations, has become the prevailing utilization of LLMs. In this paper, we first disclose an actual predicament for this typical usage that it can not scale up with training data due to context length restriction. Besides, existing works have shown that ICL also suffers from various biases and requires delicate calibration treatment. To address both challenges, we advocate a simple and effective solution, $k$NN Prompting, which first queries LLM with training data for distributed representations, then predicts test instances by simply referring to nearest neighbors. We conduct comprehensive experiments to demonstrate its two-fold superiority: 1) Calibration-Free: $k$NN Prompting does not directly align LLM output distribution with task-specific label space, instead leverages such distribution to align test and training instances. It significantly outperforms state-of-the-art calibration-based methods under comparable few-shot scenario. 2) Beyond-Context: $k$NN Prompting can further scale up effectively with as many training data as are available, continually bringing substantial improvements. The scaling trend holds across 10 orders of magnitude ranging from 2 shots to 1024 shots as well as different LLMs scales ranging from 0.8B to 30B. It successfully bridges data scaling into model scaling, and brings new potentials for the gradient-free paradigm of LLM deployment. Code is publicly available.

This paper presents Poplar, a new system for solving the private heavy-hitters problem. In this problem, there are many clients and a small set of data-collection servers. Each client holds a private bitstring. The servers want to recover the set of all popular strings, without learning anything else about any client's string. A web-browser vendor, for instance, can use Poplar to figure out which homepages are popular, without learning any user's homepage. We also consider the simpler private subset-histogram problem, in which the servers want to count how many clients hold strings in a particular set without revealing this set to the clients. Poplar uses two data-collection servers and, in a protocol run, each client send sends only a single message to the servers. Poplar protects client privacy against arbitrary misbehavior by one of the servers and our approach requires no public-key cryptography (except for secure channels), nor general-purpose multiparty computation. Instead, we rely on incremental distributed point functions, a new cryptographic tool that allows a client to succinctly secret-share the labels on the nodes of an exponentially large binary tree, provided that the tree has a single non-zero path. Along the way, we develop new general tools for providing malicious security in applications of distributed point functions.

Semiring semantics of first-order logic generalises classical Boolean semantics by permitting truth values from a commutative semiring, which can model information such as costs or access restrictions. This raises the question to what extend classical model theoretic properties still apply, and how this depends on the algebraic properties of the semiring. In this paper, we study this question for the classical locality theorems due to Hanf and Gaifman. We prove that Hanf's Locality Theorem generalises to all semirings with idempotent operations, but fails for many non-idempotent semirings. We then consider Gaifman normal forms and show that for formulae with free variables, Gaifman's Theorem does not generalise beyond the Boolean semiring. Also for sentences, it fails in the natural semiring and the tropical semiring. Our main result, however, is a constructive proof of the existence of Gaifman normal forms for min-max and lattice semirings. The proof implies a stronger version of Gaifman's classical theorem in Boolean semantics: every sentence has a Gaifman normal form which does not add negations.

Agricultural robots have the prospect to enable more efficient and sustainable agricultural production of food, feed, and fiber. Perception of crops and weeds is a central component of agricultural robots that aim to monitor fields and assess the plants as well as their growth stage in an automatic manner. Semantic perception mostly relies on deep learning using supervised approaches, which require time and qualified workers to label fairly large amounts of data. In this paper, we look into the problem of reducing the amount of labels without compromising the final segmentation performance. For robots operating in the field, pre-training networks in a supervised way is already a popular method to reduce the number of required labeled images. We investigate the possibility of pre-training in a self-supervised fashion using data from the target domain. To better exploit this data, we propose a set of domain-specific augmentation strategies. We evaluate our pre-training on semantic segmentation and leaf instance segmentation, two important tasks in our domain. The experimental results suggest that pre-training with domain-specific data paired with our data augmentation strategy leads to superior performance compared to commonly used pre-trainings. Furthermore, the pre-trained networks obtain similar performance to the fully supervised with less labeled data.

Feature models are commonly used to specify the valid configurations of a product line. In industry, feature models are often complex due to a large number of features and constraints. Thus, a multitude of automated analyses have been proposed. Many of those rely on computing the number of valid configurations which typically depends on solving a #SAT problem, a computationally expensive operation. Further, most counting-based analyses require numerous #SAT computations on the same feature model. In particular, many analyses depend on multiple computations for evaluating the number of valid configurations that include certain features or conform to partial configurations. Instead of using expensive repetitive computations on highly similar formulas, we aim to improve the performance by reusing knowledge between these computations. In this work, we are the first to propose reusing d-DNNFs for performing efficient repetitive queries on features and partial configurations. Our empirical evaluation shows that our approach is up-to 8,300 times faster (99.99\% CPU-time saved) than the state of the art of repetitively invoking #SAT solvers. Applying our tool ddnnife reduces runtimes from days to minutes compared to using #SAT solvers.

We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Lastly, we propose a conjecture that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司