亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural radiance fields (NeRF) rely on volume rendering to synthesize novel views. Volume rendering requires evaluating an integral along each ray, which is numerically approximated with a finite sum that corresponds to the exact integral along the ray under piecewise constant volume density. As a consequence, the rendered result is unstable w.r.t. the choice of samples along the ray, a phenomenon that we dub quadrature instability. We propose a mathematically principled solution by reformulating the sample-based rendering equation so that it corresponds to the exact integral under piecewise linear volume density. This simultaneously resolves multiple issues: conflicts between samples along different rays, imprecise hierarchical sampling, and non-differentiability of quantiles of ray termination distances w.r.t. model parameters. We demonstrate several benefits over the classical sample-based rendering equation, such as sharper textures, better geometric reconstruction, and stronger depth supervision. Our proposed formulation can be also be used as a drop-in replacement to the volume rendering equation of existing NeRF-based methods. Our project page can be found at pl-nerf.github.io.

相關內容

Peer prediction incentive mechanisms for crowdsourcing are generally limited to eliciting samples from categorical distributions. Prior work on extending peer prediction to arbitrary distributions has largely relied on assumptions on the structures of the distributions or known properties of the data providers. We introduce a novel class of incentive mechanisms that extend peer prediction mechanisms to arbitrary distributions by replacing the notion of an exact match with a concept of neighborhood matching. We present conditions on the belief updates of the data providers that guarantee incentive-compatibility for rational data providers, and admit a broad class of possible reasonable updates.

Despite the impressive results of arbitrary image-guided style transfer methods, text-driven image stylization has recently been proposed for transferring a natural image into a stylized one according to textual descriptions of the target style provided by the user. Unlike the previous image-to-image transfer approaches, text-guided stylization progress provides users with a more precise and intuitive way to express the desired style. However, the huge discrepancy between cross-modal inputs/outputs makes it challenging to conduct text-driven image stylization in a typical feed-forward CNN pipeline. In this paper, we present DiffStyler, a dual diffusion processing architecture to control the balance between the content and style of the diffused results. The cross-modal style information can be easily integrated as guidance during the diffusion process step-by-step. Furthermore, we propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image. We validate the proposed DiffStyler beyond the baseline methods through extensive qualitative and quantitative experiments. Code is available at \url{//github.com/haha-lisa/Diffstyler}.

Efficiently capturing the complex spatiotemporal representations from large-scale unlabeled traffic data remains to be a challenging task. In considering of the dilemma, this work employs the advanced contrastive learning and proposes a novel Spatial-Temporal Synchronous Contextual Contrastive Learning (STS-CCL) model. First, we elaborate the basic and strong augmentation methods for spatiotemporal graph data, which not only perturb the data in terms of graph structure and temporal characteristics, but also employ a learning-based dynamic graph view generator for adaptive augmentation. Second, we introduce a Spatial-Temporal Synchronous Contrastive Module (STS-CM) to simultaneously capture the decent spatial-temporal dependencies and realize graph-level contrasting. To further discriminate node individuals in negative filtering, a Semantic Contextual Contrastive method is designed based on semantic features and spatial heterogeneity, achieving node-level contrastive learning along with negative filtering. Finally, we present a hard mutual-view contrastive training scheme and extend the classic contrastive loss to an integrated objective function, yielding better performance. Extensive experiments and evaluations demonstrate that building a predictor upon STS-CCL contrastive learning model gains superior performance than existing traffic forecasting benchmarks. The proposed STS-CCL is highly suitable for large datasets with only a few labeled data and other spatiotemporal tasks with data scarcity issue.

Neural Radiance Field (NeRF) and its variants have recently emerged as successful methods for novel view synthesis and 3D scene reconstruction. However, most current NeRF models either achieve high accuracy using large model sizes, or achieve high memory-efficiency by trading off accuracy. This limits the applicable scope of any single model, since high-accuracy models might not fit in low-memory devices, and memory-efficient models might not satisfy high-quality requirements. To this end, we present SlimmeRF, a model that allows for instant test-time trade-offs between model size and accuracy through slimming, thus making the model simultaneously suitable for scenarios with different computing budgets. We achieve this through a newly proposed algorithm named Tensorial Rank Incrementation (TRaIn) which increases the rank of the model's tensorial representation gradually during training. We also observe that our model allows for more effective trade-offs in sparse-view scenarios, at times even achieving higher accuracy after being slimmed. We credit this to the fact that erroneous information such as floaters tend to be stored in components corresponding to higher ranks. Our implementation is available at //github.com/Shiran-Yuan/SlimmeRF.

Lifted probabilistic inference exploits symmetries in a probabilistic model to allow for tractable probabilistic inference with respect to domain sizes. To apply lifted inference, a lifted representation has to be obtained, and to do so, the so-called colour passing algorithm is the state of the art. The colour passing algorithm, however, is bound to a specific inference algorithm and we found that it ignores commutativity of factors while constructing a lifted representation. We contribute a modified version of the colour passing algorithm that uses logical variables to construct a lifted representation independent of a specific inference algorithm while at the same time exploiting commutativity of factors during an offline-step. Our proposed algorithm efficiently detects more symmetries than the state of the art and thereby drastically increases compression, yielding significantly faster online query times for probabilistic inference when the resulting model is applied.

Neural radiance field (NeRF) has achieved great success in novel view synthesis and 3D representation for static scenarios. Existing dynamic NeRFs usually exploit a locally dense grid to fit the deformation field; however, they fail to capture the global dynamics and concomitantly yield models of heavy parameters. We observe that the 4D space is inherently sparse. Firstly, the deformation field is sparse in spatial but dense in temporal due to the continuity of of motion. Secondly, the radiance field is only valid on the surface of the underlying scene, usually occupying a small fraction of the whole space. We thus propose to represent the 4D scene using a learnable sparse latent space, a.k.a. SLS4D. Specifically, SLS4D first uses dense learnable time slot features to depict the temporal space, from which the deformation field is fitted with linear multi-layer perceptions (MLP) to predict the displacement of a 3D position at any time. It then learns the spatial features of a 3D position using another sparse latent space. This is achieved by learning the adaptive weights of each latent code with the attention mechanism. Extensive experiments demonstrate the effectiveness of our SLS4D: it achieves the best 4D novel view synthesis using only about $6\%$ parameters of the most recent work.

Implicit neural representation has demonstrated promising results in view synthesis for large and complex scenes. However, existing approaches either fail to capture the fast-moving objects or need to build the scene graph without camera ego-motions, leading to low-quality synthesized views of the scene. We aim to jointly solve the view synthesis problem of large-scale urban scenes and fast-moving vehicles, which is more practical and challenging. To this end, we first leverage a graph structure to learn the local scene representations of dynamic objects and the background. Then, we design a progressive scheme that dynamically allocates a new local scene graph trained with frames within a temporal window, allowing us to scale up the representation to an arbitrarily large scene. Besides, the training views of urban scenes are relatively sparse, which leads to a significant decline in reconstruction accuracy for dynamic objects. Therefore, we design a frequency auto-encoder network to encode the latent code and regularize the frequency range of objects, which can enhance the representation of dynamic objects and address the issue of sparse image inputs. Additionally, we employ lidar point projection to maintain geometry consistency in large-scale urban scenes. Experimental results demonstrate that our method achieves state-of-the-art view synthesis accuracy, object manipulation, and scene roaming ability. The code will be open-sourced upon paper acceptance.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

北京阿比特科技有限公司