亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of mobile AI accelerators allows latency-sensitive applications to execute lightweight Deep Neural Networks (DNNs) on the client side. However, critical applications require powerful models that edge devices cannot host and must therefore offload requests, where the high-dimensional data will compete for limited bandwidth. This work proposes shifting away from focusing on executing shallow layers of partitioned DNNs. Instead, it advocates concentrating the local resources on variational compression optimized for machine interpretability. We introduce a novel framework for resource-conscious compression models and extensively evaluate our method in an environment reflecting the asymmetric resource distribution between edge devices and servers. Our method achieves 60% lower bitrate than a state-of-the-art SC method without decreasing accuracy and is up to 16x faster than offloading with existing codec standards.

相關內容

The emergence of generative Large Language Models (LLMs) emphasizes the need for accurate and efficient prompting approaches. LLMs are often applied in Few-Shot Learning (FSL) contexts, where tasks are executed with minimal training data. FSL has become popular in many Artificial Intelligence (AI) subdomains, including AI for health. Rare diseases, affecting a small fraction of the population, inherently require FSL techniques due to limited data availability, though manual data collection and annotation is costly and time-consuming. In this paper, we propose Models-Vote Prompting (MVP), a flexible prompting approach for improving the performance of LLM queries in FSL settings. MVP works by prompting numerous LLMs to perform the same tasks and then conducting a majority vote on the resulting outputs. This method achieves improved results to any one model in the ensemble on one-shot rare disease identification and classification tasks. We also release a novel rare disease dataset for FSL, available to those who agreed to the MIMIC-IV Data Use Agreement (DUA). Furthermore, in using MVP, each model is prompted multiple times, substantially increasing the time needed for manual annotation, and to address this, we assess the feasibility of using JSON for automating generative LLM evaluation.

We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineering approach that can directly extract backdoor functionality of a given backdoored model to a backdoor expert model. The approach is straightforward -- finetuning the backdoored model over a small set of intentionally mislabeled clean samples, such that it unlearns the normal functionality while still preserving the backdoor functionality, and thus resulting in a model (dubbed a backdoor expert model) that can only recognize backdoor inputs. Based on the extracted backdoor expert model, we show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference. Further augmented by an ensemble strategy with a finetuned auxiliary model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert), effectively mitigates 16 SOTA backdoor attacks while minimally impacting clean utility. The effectiveness of BaDExpert has been verified on multiple datasets (CIFAR10, GTSRB and ImageNet) across various model architectures (ResNet, VGG, MobileNetV2 and Vision Transformer).

One of the most common solutions adopted by software researchers to address code generation is by training Large Language Models (LLMs) on massive amounts of source code. Although a number of studies have shown that LLMs have been effectively evaluated on popular accuracy metrics (e.g., BLEU, CodeBleu), previous research has largely overlooked the role of Causal Inference as a fundamental component of the interpretability of LLMs' performance. Existing benchmarks and datasets are meant to highlight the difference between the expected and the generated outcome, but do not take into account confounding variables (e.g., lines of code, prompt size) that equally influence the accuracy metrics. The fact remains that, when dealing with generative software tasks by LLMs, no benchmark is available to tell researchers how to quantify neither the causal effect of SE-based treatments nor the correlation of confounders to the model's performance. In an effort to bring statistical rigor to the evaluation of LLMs, this paper introduces a benchmarking strategy named Galeras comprised of curated testbeds for three SE tasks (i.e., code completion, code summarization, and commit generation) to help aid the interpretation of LLMs' performance. We illustrate the insights of our benchmarking strategy by conducting a case study on the performance of ChatGPT under distinct prompt engineering methods. The results of the case study demonstrate the positive causal influence of prompt semantics on ChatGPT's generative performance by an average treatment effect of $\approx 3\%$. Moreover, it was found that confounders such as prompt size are highly correlated with accuracy metrics ($\approx 0.412\%$). The end result of our case study is to showcase causal inference evaluations, in practice, to reduce confounding bias. By reducing the bias, we offer an interpretable solution for the accuracy metric under analysis.

Recently, the fast development of Large Language Models (LLMs) such as ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. However, the application of LLMs in the recommendation domain has not been thoroughly investigated. To bridge this gap, we propose LLMRec, a LLM-based recommender system designed for benchmarking LLMs on various recommendation tasks. Specifically, we benchmark several popular off-the-shelf LLMs, such as ChatGPT, LLaMA, ChatGLM, on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Furthermore, we investigate the effectiveness of supervised finetuning to improve LLMs' instruction compliance ability. The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation. However, they demonstrated comparable performance to state-of-the-art methods in explainability-based tasks. We also conduct qualitative evaluations to further evaluate the quality of contents generated by different models, and the results show that LLMs can truly understand the provided information and generate clearer and more reasonable results. We aspire that this benchmark will serve as an inspiration for researchers to delve deeper into the potential of LLMs in enhancing recommendation performance. Our codes, processed data and benchmark results are available at //github.com/williamliujl/LLMRec.

Building AIs with adaptive behaviors in human-AI cooperation stands as a pivotal focus in AGI research. Current methods for developing cooperative agents predominantly rely on learning-based methods, where policy generalization heavily hinges on past interactions with specific teammates. These approaches constrain the agent's capacity to recalibrate its strategy when confronted with novel teammates. We propose \textbf{ProAgent}, a novel framework that harnesses large language models (LLMs) to fashion a \textit{pro}active \textit{agent} empowered with the ability to anticipate teammates' forthcoming decisions and formulate enhanced plans for itself. ProAgent excels at cooperative reasoning with the capacity to dynamically adapt its behavior to enhance collaborative efforts with teammates. Moreover, the ProAgent framework exhibits a high degree of modularity and interpretability, facilitating seamless integration to address a wide array of coordination scenarios. Experimental evaluations conducted within the framework of \textit{Overcook-AI} unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training in cooperation with AI agents. Further, when cooperating with human proxy models, its performance exhibits an average improvement exceeding 10\% compared to the current state-of-the-art, COLE. The advancement was consistently observed across diverse scenarios involving interactions with both AI agents of varying characteristics and human counterparts. These findings inspire future research for human-robot collaborations. For a hands-on demonstration, please visit \url{//pku-proagent.github.io}.

The widespread adoption of DNNs in NLP software has highlighted the need for robustness. Researchers proposed various automatic testing techniques for adversarial test cases. However, existing methods suffer from two limitations: weak error-discovering capabilities, with success rates ranging from 0% to 24.6% for BERT-based NLP software, and time inefficiency, taking 177.8s to 205.28s per test case, making them challenging for time-constrained scenarios. To address these issues, this paper proposes LEAP, an automated test method that uses LEvy flight-based Adaptive Particle swarm optimization integrated with textual features to generate adversarial test cases. Specifically, we adopt Levy flight for population initialization to increase the diversity of generated test cases. We also design an inertial weight adaptive update operator to improve the efficiency of LEAP's global optimization of high-dimensional text examples and a mutation operator based on the greedy strategy to reduce the search time. We conducted a series of experiments to validate LEAP's ability to test NLP software and found that the average success rate of LEAP in generating adversarial test cases is 79.1%, which is 6.1% higher than the next best approach (PSOattack). While ensuring high success rates, LEAP significantly reduces time overhead by up to 147.6s compared to other heuristic-based methods. Additionally, the experimental results demonstrate that LEAP can generate more transferable test cases and significantly enhance the robustness of DNN-based systems.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司