亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In \cite{wang2023towards}, a dual-consistent dual-weighted residual-based $h$-adaptive method has been proposed based on a Newton-GMG framework, towards the accurate calculation of a given quantity of interest from Euler equations. The performance of such a numerical method is satisfactory, i.e., the stable convergence of the quantity of interest can be observed in all numerical experiments. In this paper, we will focus on the efficiency issue to further develop this method, since efficiency is vital for numerical methods in practical applications such as the optimal design of the vehicle shape. Three approaches are studied for addressing the efficiency issue, i.e., i). using convolutional neural networks as a solver for dual equations, ii). designing an automatic adjustment strategy for the tolerance in the $h$-adaptive process to conduct the local refinement and/or coarsening of mesh grids, and iii). introducing OpenMP, a shared memory parallelization technique, to accelerate the module such as the solution reconstruction in the method. The feasibility of each approach and numerical issues are discussed in depth, and significant acceleration from those approaches in simulations can be observed clearly from a number of numerical experiments. In convolutional neural networks, it is worth mentioning that the dual consistency plays an important role to guarantee the efficiency of the whole method and that unstructured meshes are employed in all simulations.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

We show that the problem of counting the number of $n$-variable unate functions reduces to the problem of counting the number of $n$-variable monotone functions. Using recently obtained results on $n$-variable monotone functions, we obtain counts of $n$-variable unate functions up to $n=9$. We use an enumeration strategy to obtain the number of $n$-variable balanced monotone functions up to $n=7$. We show that the problem of counting the number of $n$-variable balanced unate functions reduces to the problem of counting the number of $n$-variable balanced monotone functions, and consequently, we obtain the number of $n$-variable balanced unate functions up to $n=7$. Using enumeration, we obtain the numbers of equivalence classes of $n$-variable balanced monotone functions, unate functions and balanced unate functions up to $n=6$. Further, for each of the considered sub-class of $n$-variable monotone and unate functions, we also obtain the corresponding numbers of $n$-variable non-degenerate functions.

The equioscillation condition is extended to multivariate approximation. To this end, it is reformulated as the synchronized oscillations between the error maximizers and the components of a related Haar matrix kernel vector. This new condition gives rise to a multivariate equioscillation theorem where the Haar condition is not assumed and hence the existence and the characterization by equioscillation become independent of uniqueness. This allows the theorem to be applicable to problems with no strong uniqueness or even no uniqueness. A technical additional requirement on the involved Haar matrix and its kernel vector is proved to be sufficient for strong uniqueness. Instances of multivariate problems with strongly unique, unique and nonunique solutions are presented to illustrate the scope of the theorem.

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have diverse applications spanning physics, optimal control, game theory, and imaging sciences. This research introduces a first-order optimization-based technique for HJ PDEs, which formulates the time-implicit update of HJ PDEs as saddle point problems. We remark that the saddle point formulation for HJ equations is aligned with the primal-dual formulation of optimal transport and potential mean-field games (MFGs). This connection enables us to extend MFG techniques and design numerical schemes for solving HJ PDEs. We employ the primal-dual hybrid gradient (PDHG) method to solve the saddle point problems, benefiting from the simple structures that enable fast computations in updates. Remarkably, the method caters to a broader range of Hamiltonians, encompassing non-smooth and spatiotemporally dependent cases. The approach's effectiveness is verified through various numerical examples in both one-dimensional and two-dimensional examples, such as quadratic and $L^1$ Hamiltonians with spatial and time dependence.

A finite element based computational scheme is developed and employed to assess a duality based variational approach to the solution of the linear heat and transport PDE in one space dimension and time, and the nonlinear system of ODEs of Euler for the rotation of a rigid body about a fixed point. The formulation turns initial-(boundary) value problems into degenerate elliptic boundary value problems in (space)-time domains representing the Euler-Lagrange equations of suitably designed dual functionals in each of the above problems. We demonstrate reasonable success in approximating solutions of this range of parabolic, hyperbolic, and ODE primal problems, which includes energy dissipation as well as conservation, by a unified dual strategy lending itself to a variational formulation. The scheme naturally associates a family of dual solutions to a unique primal solution; such `gauge invariance' is demonstrated in our computed solutions of the heat and transport equations, including the case of a transient dual solution corresponding to a steady primal solution of the heat equation. Primal evolution problems with causality are shown to be correctly approximated by non-causal dual problems.

We discuss the numerical solution of initial value problems for $\varepsilon^2\,\varphi''+a(x)\,\varphi=0$ in the highly oscillatory regime, i.e., with $a(x)>0$ and $0<\varepsilon\ll 1$. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude $\mathcal{O}(\varepsilon^{N})$ where $N$ refers to the truncation order of the underlying asymptotic series. When the optimal truncation order $N_{opt}$ is chosen, the error behaves like $\mathcal{O}(\varepsilon^{-2}\exp(-c\varepsilon^{-1}))$ with some $c>0$.

I propose an alternative algorithm to compute the MMS voting rule. Instead of using linear programming, in this new algorithm the maximin support value of a committee is computed using a sequence of maximum flow problems.

We present a reduced basis stochastic Galerkin method for partial differential equations with random inputs. In this method, the reduced basis methodology is integrated into the stochastic Galerkin method, resulting in a significant reduction in the cost of solving the Galerkin system. To reduce the main cost of matrix-vector manipulation involved in our reduced basis stochastic Galerkin approach, the secant method is applied to identify the number of reduced basis functions. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.

We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.

北京阿比特科技有限公司