亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high-dimensionality of optimisation problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce Cheetah, a PyTorch-based high-speed differentiable linear-beam dynamics code. Cheetah enables the fast collection of large data sets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimisation for accelerator tuning and system identification. This positions Cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of Cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimisation priors, and modular neural network surrogate modelling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.

相關內容

機器(qi)學(xue)(xue)(xue)習(xi)(xi)(Machine Learning)是一個研究(jiu)(jiu)計算學(xue)(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)(fa)(fa)的(de)(de)國際(ji)論(lun)壇。該雜志發表(biao)文(wen)章,報告廣泛的(de)(de)學(xue)(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)(fa)(fa)應(ying)用(yong)于(yu)各種(zhong)學(xue)(xue)(xue)習(xi)(xi)問(wen)(wen)(wen)題(ti)的(de)(de)實(shi)質性結果(guo)。該雜志的(de)(de)特色論(lun)文(wen)描述研究(jiu)(jiu)的(de)(de)問(wen)(wen)(wen)題(ti)和方(fang)法(fa)(fa)(fa)(fa),應(ying)用(yong)研究(jiu)(jiu)和研究(jiu)(jiu)方(fang)法(fa)(fa)(fa)(fa)的(de)(de)問(wen)(wen)(wen)題(ti)。有(you)關(guan)學(xue)(xue)(xue)習(xi)(xi)問(wen)(wen)(wen)題(ti)或(huo)方(fang)法(fa)(fa)(fa)(fa)的(de)(de)論(lun)文(wen)通過實(shi)證研究(jiu)(jiu)、理論(lun)分析或(huo)與心理現象的(de)(de)比較(jiao)提供了堅(jian)實(shi)的(de)(de)支(zhi)持。應(ying)用(yong)論(lun)文(wen)展示了如何應(ying)用(yong)學(xue)(xue)(xue)習(xi)(xi)方(fang)法(fa)(fa)(fa)(fa)來解決重(zhong)要的(de)(de)應(ying)用(yong)問(wen)(wen)(wen)題(ti)。研究(jiu)(jiu)方(fang)法(fa)(fa)(fa)(fa)論(lun)文(wen)改進了機器(qi)學(xue)(xue)(xue)習(xi)(xi)的(de)(de)研究(jiu)(jiu)方(fang)法(fa)(fa)(fa)(fa)。所有(you)的(de)(de)論(lun)文(wen)都以(yi)(yi)其(qi)他研究(jiu)(jiu)人員可以(yi)(yi)驗證或(huo)復制的(de)(de)方(fang)式描述了支(zhi)持證據。論(lun)文(wen)還詳細說明(ming)了學(xue)(xue)(xue)習(xi)(xi)的(de)(de)組(zu)成部分,并討論(lun)了關(guan)于(yu)知識(shi)表(biao)示和性能(neng)任務的(de)(de)假設。 官網地址:

Extensive studies have been devoted to privatizing general-domain Large Language Models (LLMs) as Domain-Specific LLMs via feeding specific-domain data. However, these privatization efforts often ignored a critical aspect: Dual Logic Ability, which is a core reasoning ability for LLMs. The dual logic ability of LLMs ensures that they can maintain a consistent stance when confronted with both positive and negative statements about the same fact. Our study focuses on how the dual logic ability of LLMs is affected during the privatization process in the medical domain. We conduct several experiments to analyze the dual logic ability of LLMs by examining the consistency of the stance in responses to paired questions about the same fact. In our experiments, interestingly, we observed a significant decrease in the dual logic ability of existing LLMs after privatization. Besides, our results indicate that incorporating general domain dual logic data into LLMs not only enhances LLMs' dual logic ability but also further improves their accuracy. These findings underscore the importance of prioritizing LLMs' dual logic ability during the privatization process. Our study establishes a benchmark for future research aimed at exploring LLMs' dual logic ability during the privatization process and offers valuable guidance for privatization efforts in real-world applications.

This study explores the realm of knowledge-base question answering (KBQA). KBQA is considered a challenging task, particularly in parsing intricate questions into executable logical forms. Traditional semantic parsing (SP)-based methods require extensive data annotations, which result in significant costs. Recently, the advent of few-shot in-context learning, powered by large language models (LLMs), has showcased promising capabilities. Yet, fully leveraging LLMs to parse questions into logical forms in low-resource scenarios poses a substantial challenge. To tackle these hurdles, we introduce Interactive-KBQA, a framework designed to generate logical forms through direct interaction with knowledge bases (KBs). Within this framework, we have developed three generic APIs for KB interaction. For each category of complex question, we devised exemplars to guide LLMs through the reasoning processes. Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets with a minimal number of examples (shots). Importantly, our approach supports manual intervention, allowing for the iterative refinement of LLM outputs. By annotating a dataset with step-wise reasoning processes, we showcase our model's adaptability and highlight its potential for contributing significant enhancements to the field.

Due to the empirical success of reinforcement learning, an increasing number of students study the subject. However, from our practical teaching experience, we see students entering the field (bachelor, master and early PhD) often struggle. On the one hand, textbooks and (online) lectures provide the fundamentals, but students find it hard to translate between equations and code. On the other hand, public codebases do provide practical examples, but the implemented algorithms tend to be complex, and the underlying test environments contain multiple reinforcement learning challenges at once. Although this is realistic from a research perspective, it often hinders educational conceptual understanding. To solve this issue we introduce EduGym, a set of educational reinforcement learning environments and associated interactive notebooks tailored for education. Each EduGym environment is specifically designed to illustrate a certain aspect/challenge of reinforcement learning (e.g., exploration, partial observability, stochasticity, etc.), while the associated interactive notebook explains the challenge and its possible solution approaches, connecting equations and code in a single document. An evaluation among RL students and researchers shows 86% of them think EduGym is a useful tool for reinforcement learning education. All notebooks are available from //www.edugym.org/, while the full software package can be installed from //github.com/RLG-Leiden/edugym.

Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies.

In recent years, black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in Remote Sensing. Despite the potential benefits of uncovering the inner workings of these models with explainable AI, a comprehensive overview summarizing the used explainable AI methods and their objectives, findings, and challenges in Remote Sensing applications is still missing. In this paper, we address this issue by performing a systematic review to identify the key trends of how explainable AI is used in Remote Sensing and shed light on novel explainable AI approaches and emerging directions that tackle specific Remote Sensing challenges. We also reveal the common patterns of explanation interpretation, discuss the extracted scientific insights in Remote Sensing, and reflect on the approaches used for explainable AI methods evaluation. Our review provides a complete summary of the state-of-the-art in the field. Further, we give a detailed outlook on the challenges and promising research directions, representing a basis for novel methodological development and a useful starting point for new researchers in the field of explainable AI in Remote Sensing.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This paper aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we firstly illuminate EDL from machine learning and EC and regard EDL as an optimization problem. According to the DL pipeline, we systematically introduce EDL methods ranging from feature engineering, model generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications, open issues and potentially promising lines of future research are suggested. This survey has reviewed recent developments of EDL and offers insightful guidelines for the development of EDL.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

北京阿比特科技有限公司