亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given the recent impressive accomplishments of language models (LMs) for code generation, we explore the use of LMs as adaptive mutation and crossover operators for an evolutionary neural architecture search (NAS) algorithm. While NAS still proves too difficult a task for LMs to succeed at solely through prompting, we find that the combination of evolutionary prompt engineering with soft prompt-tuning, a method we term EvoPrompting, consistently finds diverse and high performing models. We first demonstrate that EvoPrompting is effective on the computationally efficient MNIST-1D dataset, where EvoPrompting produces convolutional architecture variants that outperform both those designed by human experts and naive few-shot prompting in terms of accuracy and model size. We then apply our method to searching for graph neural networks on the CLRS Algorithmic Reasoning Benchmark, where EvoPrompting is able to design novel architectures that outperform current state-of-the-art models on 21 out of 30 algorithmic reasoning tasks while maintaining similar model size. EvoPrompting is successful at designing accurate and efficient neural network architectures across a variety of machine learning tasks, while also being general enough for easy adaptation to other tasks beyond neural network design.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 穩健性 · 語言模型化 · 推斷 · Performer ·
2024 年 1 月 9 日

While language models have made many milestones in text inference and classification tasks, they remain susceptible to adversarial attacks that can lead to unforeseen outcomes. Existing works alleviate this problem by equipping language models with defense patches. However, these defense strategies often rely on impractical assumptions or entail substantial sacrifices in model performance. Consequently, enhancing the resilience of the target model using such defense mechanisms is a formidable challenge. This paper introduces an innovative model for robust text inference and classification, built upon diffusion models (ROIC-DM). Benefiting from its training involving denoising stages, ROIC-DM inherently exhibits greater robustness compared to conventional language models. Moreover, ROIC-DM can attain comparable, and in some cases, superior performance to language models, by effectively incorporating them as advisory components. Extensive experiments conducted with several strong textual adversarial attacks on three datasets demonstrate that (1) ROIC-DM outperforms traditional language models in robustness, even when the latter are fortified with advanced defense mechanisms; (2) ROIC-DM can achieve comparable and even better performance than traditional language models by using them as advisors.

Large languages models (LLMs) trained on datasets of publicly available source code have established a new state-of-the-art in code completion. However, these models are mostly unaware of the code that already exists within a specific project, preventing the models from making good use of existing APIs. Instead, LLMs often invent, or "hallucinate", non-existent APIs or produce variants of already existing code. Although the API information is available to IDEs, the input size limit of LLMs prevents code completion techniques from including all relevant context into the prompt. This paper presents De-Hallucinator, an LLM-based code completion technique that grounds the predictions of a model through a novel combination of retrieving suitable API references and iteratively querying the model with increasingly suitable context information in the prompt. The approach exploits the observation that LLMs often predict code that resembles the desired completion, but that fails to correctly refer to already existing APIs. De-Hallucinator automatically identifies project-specific API references related to the code prefix and to the model's initial predictions and adds these references into the prompt. Our evaluation applies the approach to the task of predicting API usages in open-source Python projects. We show that De-Hallucinator consistently improves the predicted code across four state-of-the-art LLMs compared to querying the model only with the code before the cursor. In particular, the approach improves the edit distance of the predicted code by 23-51% and the recall of correctly predicted API usages by 24-61% relative to the baseline.

The increasing use of transformer-based large language models brings forward the challenge of processing long sequences. In document visual question answering (DocVQA), leading methods focus on the single-page setting, while documents can span hundreds of pages. We present GRAM, a method that seamlessly extends pre-trained single-page models to the multi-page setting, without requiring computationally-heavy pretraining. To do so, we leverage a single-page encoder for local page-level understanding, and enhance it with document-level designated layers and learnable tokens, facilitating the flow of information across pages for global reasoning. To enforce our model to utilize the newly introduced document-level tokens, we propose a tailored bias adaptation method. For additional computational savings during decoding, we introduce an optional compression stage using our C-Former model, which reduces the encoded sequence length, thereby allowing a tradeoff between quality and latency. Extensive experiments showcase GRAM's state-of-the-art performance on the benchmarks for multi-page DocVQA, demonstrating the effectiveness of our approach.

The underground exploitation of large language models (LLMs) for malicious services (i.e., Malla) is witnessing an uptick, amplifying the cyber threat landscape and posing questions about the trustworthiness of LLM technologies. However, there has been little effort to understand this new cybercrime, in terms of its magnitude, impact, and techniques. In this paper, we conduct the first systematic study on 212 real-world Mallas, uncovering their proliferation in underground marketplaces and exposing their operational modalities. Our study discloses the Malla ecosystem, revealing its significant growth and impact on today's public LLM services. Through examining 212 Mallas, we uncovered eight backend LLMs used by Mallas, along with 182 prompts that circumvent the protective measures of public LLM APIs. We further demystify the tactics employed by Mallas, including the abuse of uncensored LLMs and the exploitation of public LLM APIs through jailbreak prompts. Our findings enable a better understanding of the real-world exploitation of LLMs by cybercriminals, offering insights into strategies to counteract this cybercrime.

Operationalizing large language models (LLMs) for custom, repetitive data pipelines is challenging, particularly due to their unpredictable and potentially catastrophic failures. Acknowledging the inevitability of these errors, we focus on identifying when LLMs may be generating incorrect responses when used repeatedly as part of data generation pipelines. We present SPADE, a method for automatically synthesizing assertions that identify bad LLM outputs. SPADE analyzes prompt version histories to create candidate assertion functions and then selects a minimal set that fulfills both coverage and accuracy requirements. In testing across nine different real-world LLM pipelines, SPADE efficiently reduces the number of assertions by 14% and decreases false failures by 21% when compared to simpler baselines.

The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.

Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids intricate program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at //github.com/gonglinyuan/ast_t5.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司