亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To understand high precision observations of exoplanets and brown dwarfs, we need detailed and complex general circulation models (GCMs) that incorporate hydrodynamics, chemistry, and radiation. For this study, we specifically examined the coupling between chemistry and radiation in GCMs and compared different methods for the mixing of opacities of different chemical species in the correlated-k assumption, when equilibrium chemistry cannot be assumed. We propose a fast machine learning method based on DeepSets (DS), which effectively combines individual correlated-k opacities (k-tables). We evaluated the DS method alongside other published methods such as adaptive equivalent extinction (AEE) and random overlap with rebinning and resorting (RORR). We integrated these mixing methods into our GCM (expeRT/MITgcm) and assessed their accuracy and performance for the example of the hot Jupiter HD~209458 b. Our findings indicate that the DS method is both accurate and efficient for GCM usage, whereas RORR is too slow. Additionally, we observed that the accuracy of AEE depends on its specific implementation and may introduce numerical issues in achieving radiative transfer solution convergence. We then applied the DS mixing method in a simplified chemical disequilibrium situation, where we modeled the rainout of TiO and VO, and confirmed that the rainout of TiO and VO would hinder the formation of a stratosphere. To further expedite the development of consistent disequilibrium chemistry calculations in GCMs, we provide documentation and code for coupling the DS mixing method with correlated-k radiative transfer solvers. The DS method has been extensively tested to be accurate enough for GCMs; however, other methods might be needed for accelerating atmospheric retrievals.

相關內容

是一(yi)種(zhong)由微軟公司開發(fa)的能夠讓軟件開發(fa)者(zhe)對(dui)媒體文件執行(xing)各(ge)種(zhong)不同處理的應用程序設計接口。

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.

Disaggregated evaluation is a central task in AI fairness assessment, with the goal to measure an AI system's performance across different subgroups defined by combinations of demographic or other sensitive attributes. The standard approach is to stratify the evaluation data across subgroups and compute performance metrics separately for each group. However, even for moderately-sized evaluation datasets, sample sizes quickly get small once considering intersectional subgroups, which greatly limits the extent to which intersectional groups are considered in many disaggregated evaluations. In this work, we introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups. We also provide corresponding inference strategies for constructing confidence intervals and explore how goodness-of-fit testing can yield insight into the structure of fairness-related harms experienced by intersectional groups. We evaluate our approach on two publicly available datasets, and several variants of semi-synthetic data. The results show that our method is considerably more accurate than the standard approach, especially for small subgroups, and goodness-of-fit testing helps identify the key factors that drive differences in performance.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

In this article we consider an aggregate loss model with dependent losses. The losses occurrence process is governed by a two-state Markovian arrival process (MAP2), a Markov renewal process process that allows for (1) correlated inter-losses times, (2) non-exponentially distributed inter-losses times and, (3) overdisperse losses counts. Some quantities of interest to measure persistence in the loss occurrence process are obtained. Given a real operational risk database, the aggregate loss model is estimated by fitting separately the inter-losses times and severities. The MAP2 is estimated via direct maximization of the likelihood function, and severities are modeled by the heavy-tailed, double-Pareto Lognormal distribution. In comparison with the fit provided by the Poisson process, the results point out that taking into account the dependence and overdispersion in the inter-losses times distribution leads to higher capital charges.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are intertwined and depend on each other because larger events occur less frequently and vice versa. However, due to the lack of multi-temporal inventories and joint statistical models, modelling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with a model motivated by extreme-value theory to analyse an inventory of 30 years of observed rainfall-triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our results show that the proposed model performs excellently and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under both climate change scenarios (SSP245 and SSP885), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions while remaining the same in the middle Himalayan region whilst decreasing slightly in the upper Himalayan region areas.

We propose a two-step Newton's method for refining an approximation of a singular zero whose deflation process terminates after one step, also known as a deflation-one singularity. Given an isolated singular zero of a square analytic system, our algorithm exploits an invertible linear operator obtained by combining the Jacobian and a projection of the Hessian in the direction of the kernel of the Jacobian. We prove the quadratic convergence of the two-step Newton method when it is applied to an approximation of a deflation-one singular zero. Also, the algorithm requires a smaller size of matrices than the existing methods, making it more efficient. We demonstrate examples and experiments to show the efficiency of the method.

Speech foundation models (SFMs) have been benchmarked on many speech processing tasks, often achieving state-of-the-art performance with minimal adaptation. However, the SFM paradigm has been significantly less explored for applications of interest to the speech perception community. In this paper we present a systematic evaluation of 10 SFMs on one such application: Speech intelligibility prediction. We focus on the non-intrusive setup of the Clarity Prediction Challenge 2 (CPC2), where the task is to predict the percentage of words correctly perceived by hearing-impaired listeners from speech-in-noise recordings. We propose a simple method that learns a lightweight specialized prediction head on top of frozen SFMs to approach the problem. Our results reveal statistically significant differences in performance across SFMs. Our method resulted in the winning submission in the CPC2, demonstrating its promise for speech perception applications.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司