亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum computing becomes more of a reality as time passes, bringing several cybersecurity challenges. Modern cryptography is based on the computational complexity of specific mathematical problems, but as new quantum-based computers appear, classical methods might not be enough to secure communications. In this paper, we analyse the state of the Galileo Open Service Navigation Message Authentication (OSNMA) to overcome these new threats. This analysis and its assessment have been performed using OSNMA documentation, reviewing the available Post Quantum Cryptography (PQC) algorithms competing in the National Institute of Standards and Technology (NIST) standardization process, and studying the possibility of its implementation in the Galileo service. The main barrier to adopting the PQC approach is the size of both the signature and the key. The analysis shows that OSNMA is not yet prepared to face the quantum threat, and a significant change would be required. This work concludes by assessing different temporal countermeasures that can be implemented to sustain the system's integrity in the short term.

相關內容

Methods for anomaly detection of new physics processes are often limited to low-dimensional spaces due to the difficulty of learning high-dimensional probability densities. Particularly at the constituent level, incorporating desirable properties such as permutation invariance and variable-length inputs becomes difficult within popular density estimation methods. In this work, we introduce a permutation-invariant density estimator for particle physics data based on diffusion models, specifically designed to handle variable-length inputs. We demonstrate the efficacy of our methodology by utilizing the learned density as a permutation-invariant anomaly detection score, effectively identifying jets with low likelihood under the background-only hypothesis. To validate our density estimation method, we investigate the ratio of learned densities and compare to those obtained by a supervised classification algorithm.

Current state-of-the-art 6d pose estimation is too compute intensive to be deployed on edge devices, such as Microsoft HoloLens (2) or Apple iPad, both used for an increasing number of augmented reality applications. The quality of AR is greatly dependent on its capabilities to detect and overlay geometry within the scene. We propose a synthetically trained client-server-based augmented reality application, demonstrating state-of-the-art object pose estimation of metallic and texture-less industry objects on edge devices. Synthetic data enables training without real photographs, i.e. for yet-to-be-manufactured objects. Our qualitative evaluation on an AR-assisted sorting task, and quantitative evaluation on both renderings, as well as real-world data recorded on HoloLens 2, sheds light on its real-world applicability.

Decoding of Low-Density Parity Check (LDPC) codes can be viewed as a special case of XOR-SAT problems, for which low-computational complexity bit-flipping algorithms have been proposed in the literature. However, a performance gap exists between the bit-flipping LDPC decoding algorithms and the benchmark LDPC decoding algorithms, such as the Sum-Product Algorithm (SPA). In this paper, we propose an XOR-SAT solver using log-sum-exponential functions and demonstrate its advantages for LDPC decoding. This is then approximated using the Margin Propagation formulation to attain a low-complexity LDPC decoder. The proposed algorithm uses soft information to decide the bit-flips that maximize the number of parity check constraints satisfied over an optimization function. The proposed solver can achieve results that are within $0.1$dB of the Sum-Product Algorithm for the same number of code iterations. It is also at least 10x lesser than other Gradient-Descent Bit Flipping decoding algorithms, which are also bit-flipping algorithms based on optimization functions. The approximation using the Margin Propagation formulation does not require any multipliers, resulting in significantly lower computational complexity than other soft-decision Bit-Flipping LDPC decoders.

Text-to-image generation has made remarkable progress with the emergence of diffusion models. However, it is still a difficult task to generate images for street views based on text, mainly because the road topology of street scenes is complex, the traffic status is diverse and the weather condition is various, which makes conventional text-to-image models difficult to deal with. To address these challenges, we propose a novel controllable text-to-image framework, named \textbf{Text2Street}. In the framework, we first introduce the lane-aware road topology generator, which achieves text-to-map generation with the accurate road structure and lane lines armed with the counting adapter, realizing the controllable road topology generation. Then, the position-based object layout generator is proposed to obtain text-to-layout generation through an object-level bounding box diffusion strategy, realizing the controllable traffic object layout generation. Finally, the multiple control image generator is designed to integrate the road topology, object layout and weather description to realize controllable street-view image generation. Extensive experiments show that the proposed approach achieves controllable street-view text-to-image generation and validates the effectiveness of the Text2Street framework for street views.

Influence Maximization (IM) is a crucial problem in data science. The goal is to find a fixed-size set of highly-influential seed vertices on a network to maximize the influence spread along the edges. While IM is NP-hard on commonly-used diffusion models, a greedy algorithm can achieve $(1-1/e)$-approximation, repeatedly selecting the vertex with the highest marginal gain in influence as the seed. Due to theoretical guarantees, rich literature focuses on improving the performance of the greedy algorithm. To estimate the marginal gain, existing work either runs Monte Carlo (MC) simulations of influence spread or pre-stores hundreds of sketches (usually per-vertex information). However, these approaches can be inefficient in time (MC simulation) or space (storing sketches), preventing the ideas from scaling to today's large-scale graphs. This paper significantly improves the scalability of IM using two key techniques. The first is a sketch-compression technique for the independent cascading model on undirected graphs. It allows combining the simulation and sketching approaches to achieve a time-space tradeoff. The second technique includes new data structures for parallel seed selection. Using our new approaches, we implemented PaC-IM: Parallel and Compressed IM. We compare PaC-IM with state-of-the-art parallel IM systems on a 96-core machine with 1.5TB memory. PaC-IM can process large-scale graphs with up to 900M vertices and 74B edges in about 2 hours. On average across all tested graphs, our uncompressed version is 5--18$\times$ faster and about 1.4$\times$ more space-efficient than existing parallel IM systems. Using compression further saves 3.8$\times$ space with only 70% overhead in time on average.

Classical models of computation have been successful in capturing the very essence of individual computing devices. Although they are useful to understand computability power and limitations in the small, such models are not suitable to study large-scale complex computations. Accordingly, plenty of formalisms have been proposed in the last half century as an attempt to raise the level of abstraction, with the aim of describing not only a single computing device but interactions among a collection of them. In this paper, we encompass such formalisms into a common framework which we refer to as Models of High-Level Computation. We particularly discuss the semantics, some of the key properties, paradigms and future directions of such models.

Score-based statistical models play an important role in modern machine learning, statistics, and signal processing. For hypothesis testing, a score-based hypothesis test is proposed in \cite{wu2022score}. We analyze the performance of this score-based hypothesis testing procedure and derive upper bounds on the probabilities of its Type I and II errors. We prove that the exponents of our error bounds are asymptotically (in the number of samples) tight for the case of simple null and alternative hypotheses. We calculate these error exponents explicitly in specific cases and provide numerical studies for various other scenarios of interest.

Data reduction is a fundamental challenge of modern technology, where classical statistical methods are not applicable because of computational limitations. We consider linear regression for an extraordinarily large number of observations, but only a few covariates. Subsampling aims at the selection of a given percentage of the existing original data. Under distributional assumptions on the covariates, we derive D-optimal subsampling designs and study their theoretical properties. We make use of fundamental concepts of optimal design theory and an equivalence theorem from constrained convex optimization. The thus obtained subsampling designs provide simple rules for whether to accept or reject a data point, allowing for an easy algorithmic implementation. In addition, we propose a simplified subsampling method with lower computational complexity that differs from the D-optimal design. We present a simulation study, comparing both subsampling schemes with the IBOSS method in the case of a fixed size of the subsample.

The approach to giving a proof-theoretic semantics for IMLL taken by Gheorghiu, Gu and Pym is an interesting adaptation of the work presented by Sandqvist in his 2015 paper for IPL. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the authors of the semantics for IMLL used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present a semantics for intuitionistic linear logic, by first presenting a semantics for the multiplicative and additive fragment after which we focus solely on considering the modality "of-course", thus giving a proof-theoretic semantics for intuitionistic linear logic.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司