We extend the shifted boundary method (SBM) to the simulation of incompressible fluid flow using immersed octree meshes. Previous work on SBM for fluid flow primarily utilized two- or three-dimensional unstructured tetrahedral grids. Recently, octree grids have become an essential component of immersed CFD solvers, and this work addresses this gap and the associated computational challenges. We leverage an optimal (approximate) surrogate boundary constructed efficiently on incomplete and adaptive octree meshes. The resulting framework enables the simulation of the incompressible Navier-Stokes equations in complex geometries without requiring boundary-fitted grids. Simulations of benchmark tests in two and three dimensions demonstrate that the Octree-SBM framework is a robust, accurate, and efficient approach to simulating fluid dynamics problems with complex geometries.
Westudythestatisticalpropertiesoftheentropicoptimal(self) transport problem for smooth probability measures. We provide an accurate description of the limit distribution for entropic (self-)potentials and plans for shrinking regularization parameter, which strongly contrasts prior work where the regularization parameter is held fix. Additionally, we show that a rescaling of the barycentric projection of the empirical entropic optimal self-transport plans converges to the score function, a central object for diffusion models, and characterize the asymptotic fluctuations both pointwise and in L2. Finally, we describe under what conditions the methods used enable to derive (pointwise) limiting distribution results for the empirical entropic optimal transport potentials in the case of two different measures and appropriately chosen shrinking regularization parameter. This endeavour requires better understanding the composition of Sinkhorn operators, a result of independent interest.
A new variant of the GMRES method is presented for solving linear systems with the same matrix and subsequently obtained multiple right-hand sides. The new method keeps such properties of the classical GMRES algorithm as follows. Both bases of the search space and its image are maintained orthonormal that increases the robustness of the method. Moreover there is no need to store both bases since they are effectively represented within a common basis. Along with it our method is theoretically equivalent to the GCR method extended for a case of multiple right-hand sides but is more numerically robust and requires less memory. The main result of the paper is a mechanism of adding an arbitrary direction vector to the search space that can be easily adopted for flexible GMRES or GMRES with deflated restarting.
Phase-field models of fatigue are capable of reproducing the main phenomenology of fatigue behavior. However, phase-field computations in the high-cycle fatigue regime are prohibitively expensive, due to the need to resolve spatially the small length scale inherent to phase-field models and temporally the loading history for several millions of cycles. As a remedy, we propose a fully adaptive acceleration scheme based on the cycle jump technique, where the cycle-by-cycle resolution of an appropriately determined number of cycles is skipped while predicting the local system evolution during the jump. The novelty of our approach is a cycle-jump criterion to determine the appropriate cycle-jump size based on a target increment of a global variable which monitors the advancement of fatigue. We propose the definition and meaning of this variable for three general stages of the fatigue life. In comparison to existing acceleration techniques, our approach needs no parameters and bounds for the cycle-jump size, and it works independently of the material, specimen or loading conditions. Since one of the monitoring variables is the fatigue crack length, we introduce an accurate, flexible and efficient method for its computation, which overcomes the issues of conventional crack tip tracking algorithms and enables the consideration of several cracks evolving at the same time. The performance of the proposed acceleration scheme is demonstrated with representative numerical examples, which show a speedup reaching four orders of magnitude in the high-cycle fatigue regime with consistently high accuracy.
For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.
Finite element discretization of Stokes problems can result in singular, inconsistent saddle point linear algebraic systems. This inconsistency can cause many iterative methods to fail to converge. In this work, we consider the lowest-order weak Galerkin finite element method to discretize Stokes flow problems and study a consistency enforcement by modifying the right-hand side of the resulting linear system. It is shown that the modification of the scheme does not affect the optimal-order convergence of the numerical solution. Moreover, inexact block diagonal and triangular Schur complement preconditioners and the minimal residual method (MINRES) and the generalized minimal residual method (GMRES) are studied for the iterative solution of the modified scheme. Bounds for the eigenvalues and the residual of MINRES/GMRES are established. Those bounds show that the convergence of MINRES and GMRES is independent of the viscosity parameter and mesh size. The convergence of the modified scheme and effectiveness of the preconditioners are verified using numerical examples in two and three dimensions.
Runge-Kutta methods have an irreplaceable position among numerical methods designed to solve ordinary differential equations. Especially, implicit ones are suitable for approximating solutions of stiff initial value problems. We propose a new way of deriving coefficients of implicit Runge-Kutta methods. This approach based on repeated integrals yields both new and well-known Butcher's tableaux. We discuss the properties of newly derived methods and compare them with standard collocation implicit Runge-Kutta methods in a series of numerical experiments, including the Prothero-Robinson problem.
Molecular communication is a bio-inspired communication paradigm where molecules are used as the information carrier. This paper considers a molecular communication network where the transmitter uses concentration modulated signals for communication. Our focus is to design receivers that can demodulate these signals. We want the receivers to use enzymatic cycles as their building blocks and can work approximately as a maximum a posteriori (MAP) demodulator. No receivers with all these features exist in the current molecular communication literature. We consider enzymatic cycles because they are a very common class of chemical reactions that are found in living cells. In addition, a MAP receiver has good statistical performance. In this paper, we study the operating regime of an enzymatic cycle and how the parameters of the enzymatic cycles can be chosen so that the receiver can approximately implement a MAP demodulator. We use simulation to study the performance of this receiver. We show that we can reduce the bit-error ratio of the demodulator if the enzymatic cycle operates in specific parameter regimes.
The maximal regularity property of discontinuous Galerkin methods for linear parabolic equations is used together with variational techniques to establish a priori and a posteriori error estimates of optimal order under optimal regularity assumptions. The analysis is set in the maximal regularity framework of UMD Banach spaces. Similar results were proved in an earlier work, based on the consistency analysis of Radau IIA methods. The present error analysis, which is based on variational techniques, is of independent interest, but the main motivation is that it extends to nonlinear parabolic equations; in contrast to the earlier work. Both autonomous and nonautonomous linear equations are considered.
Unlabeled sensing is a linear inverse problem with permuted measurements. We propose an alternating minimization (AltMin) algorithm with a suitable initialization for two widely considered permutation models: partially shuffled/$k$-sparse permutations and $r$-local/block diagonal permutations. Key to the performance of the AltMin algorithm is the initialization. For the exact unlabeled sensing problem, assuming either a Gaussian measurement matrix or a sub-Gaussian signal, we bound the initialization error in terms of the number of blocks $s$ and the number of shuffles $k$. Experimental results show that our algorithm is fast, applicable to both permutation models, and robust to choice of measurement matrix. We also test our algorithm on several real datasets for the linked linear regression problem and show superior performance compared to baseline methods.
Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.