Instrumental variables allow for quantification of cause and effect relationships even in the absence of interventions. To achieve this, a number of causal assumptions must be met, the most important of which is the independence assumption, which states that the instrument and any confounding factor must be independent. However, if this independence condition is not met, can we still work with imperfect instrumental variables? Imperfect instruments can manifest themselves by violations of the instrumental inequalities that constrain the set of correlations in the scenario. In this paper, we establish a quantitative relationship between such violations of instrumental inequalities and the minimal amount of measurement dependence required to explain them. As a result, we provide adapted inequalities that are valid in the presence of a relaxed measurement dependence assumption in the instrumental scenario. This allows for the adaptation of existing and new lower bounds on the average causal effect for instrumental scenarios with binary outcomes. Finally, we discuss our findings in the context of quantum mechanics.
This article studies the estimation of community memberships from non-binary pair interactions represented by an $N$-by-$N$ tensor whose values are elements of $\mathcal S$, where $N$ is the number of nodes and $\mathcal S$ is the space of the pairwise interactions between the nodes. As an information-theoretic benchmark, we study data sets generated by a non-binary stochastic block model, and derive fundamental information criteria for the recovery of the community memberships as $N \to \infty$. Examples of applications include weighted networks ($\mathcal S = \mathbb R$), link-labeled networks $(\mathcal S = \{0, 1, \dots, L\}$), multiplex networks $(\mathcal S = \{0,1\}^M$) and temporal networks ($\mathcal S = \{0,1\}^T$). For temporal interactions, we show that (i) even a small increase in $T$ may have a big impact on the recovery of community memberships, (ii) consistent recovery is possible even for very sparse data (e.g.\ bounded average degree) when $T$ is large enough. We also present several estimation algorithms, both offline and online, which fully utilise the temporal nature of the observed data. We analyse the accuracy of the proposed estimation algorithms under various assumptions on data sparsity and identifiability. Numerical experiments show that even a poor initial estimate (e.g., blind random guess) of the community assignment leads to high accuracy obtained by the online algorithm after a small number of iterations, and remarkably so also in very sparse regimes.
An important problem in causal inference is to break down the total effect of a treatment on an outcome into different causal pathways and to quantify the causal effect in each pathway. For instance, in causal fairness, the total effect of being a male employee (i.e., treatment) constitutes its direct effect on annual income (i.e., outcome) and the indirect effect via the employee's occupation (i.e., mediator). Causal mediation analysis (CMA) is a formal statistical framework commonly used to reveal such underlying causal mechanisms. One major challenge of CMA in observational studies is handling confounders, variables that cause spurious causal relationships among treatment, mediator, and outcome. Conventional methods assume sequential ignorability that implies all confounders can be measured, which is often unverifiable in practice. This work aims to circumvent the stringent sequential ignorability assumptions and consider hidden confounders. Drawing upon proxy strategies and recent advances in deep learning, we propose to simultaneously uncover the latent variables that characterize hidden confounders and estimate the causal effects. Empirical evaluations using both synthetic and semi-synthetic datasets validate the effectiveness of the proposed method. We further show the potentials of our approach for causal fairness analysis.
Consider a random graph process with $n$ vertices corresponding to points $v_{i} \sim {Unif}[0,1]$ embedded randomly in the interval, and where edges are inserted between $v_{i}, v_{j}$ independently with probability given by the graphon $w(v_{i},v_{j}) \in [0,1]$. Following Chuangpishit et al. (2015), we call a graphon $w$ diagonally increasing if, for each $x$, $w(x,y)$ decreases as $y$ moves away from $x$. We call a permutation $\sigma \in S_{n}$ an ordering of these vertices if $v_{\sigma(i)} < v_{\sigma(j)}$ for all $i < j$, and ask: how can we accurately estimate $\sigma$ from an observed graph? We present a randomized algorithm with output $\hat{\sigma}$ that, for a large class of graphons, achieves error $\max_{1 \leq i \leq n} | \sigma(i) - \hat{\sigma}(i)| = O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption that is satisfied by some popular graphon models, we break this "barrier" at $\sqrt{n}$ and obtain the vastly better rate $O^{*}(n^{\epsilon})$ for any $\epsilon > 0$. These improved seriation bounds can be combined with previous work to give more efficient and accurate algorithms for related tasks, including: estimating diagonally increasing graphons, and testing whether a graphon is diagonally increasing.
Recent advances in quantized compressed sensing and high-dimensional estimation have shown that signal recovery is even feasible under strong non-linear distortions in the observation process. An important characteristic of associated guarantees is uniformity, i.e., recovery succeeds for an entire class of structured signals with a fixed measurement ensemble. However, despite significant results in various special cases, a general understanding of uniform recovery from non-linear observations is still missing. This paper develops a unified approach to this problem under the assumption of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple least-squares estimator with any convex constraint can serve as a universal recovery strategy, which is outlier robust and does not require explicit knowledge of the underlying non-linearity. Based on empirical process theory, a key technical novelty is an approximative increment condition that can be implemented for all common types of non-linear models. This flexibility allows us to apply our approach to a variety of problems in non-linear compressed sensing and high-dimensional statistics, leading to several new and improved guarantees. Each of these applications is accompanied by a conceptually simple and systematic proof, which does not rely on any deeper properties of the observation model. On the other hand, known local stability properties can be incorporated into our framework in a plug-and-play manner, thereby implying near-optimal error bounds.
The problem of selecting optimal backdoor adjustment sets to estimate causal effects in graphical models with hidden and conditioned variables is addressed. Previous work has defined optimality as achieving the smallest asymptotic estimation variance and derived an optimal set for the case without hidden variables. For the case with hidden variables there can be settings where no optimal set exists and currently only a sufficient graphical optimality criterion of limited applicability has been derived. In the present work optimality is characterized as maximizing a certain adjustment information which allows to derive a necessary and sufficient graphical criterion for the existence of an optimal adjustment set and a definition and algorithm to construct it. Further, the optimal set is valid if and only if a valid adjustment set exists and has higher (or equal) adjustment information than the Adjust-set proposed in Perkovi{\'c} et al. [Journal of Machine Learning Research, 18: 1--62, 2018] for any graph. The results translate to minimal asymptotic estimation variance for a class of estimators whose asymptotic variance follows a certain information-theoretic relation. Numerical experiments indicate that the asymptotic results also hold for relatively small sample sizes and that the optimal adjustment set or minimized variants thereof often yield better variance also beyond that estimator class. Surprisingly, among the randomly created setups more than 90\% fulfill the optimality conditions indicating that also in many real-world scenarios graphical optimality may hold. Code is available as part of the python package \url{//github.com/jakobrunge/tigramite}.
For each partition of a data set into a given number of parts there is a partition such that every part is as much as possible a good model (an "algorithmic sufficient statistic") for the data in that part. Since this can be done for every number between one and the number of data, the result is a function, the cluster structure function. It maps the number of parts of a partition to values related to the deficiencies of being good models by the parts. Such a function starts with a value at least zero for no partition of the data set and descents to zero for the partition of the data set into singleton parts. The optimal clustering is the one chosen to minimize the cluster structure function. The theory behind the method is expressed in algorithmic information theory (Kolmogorov complexity). In practice the Kolmogorov complexities involved are approximated by a concrete compressor. We give examples using real data sets: the MNIST handwritten digits and the segmentation of real cells as used in stem cell research.
The effect of bias on hypothesis formation is characterized for an automated data-driven projection pursuit neural network to extract and select features for binary classification of data streams. This intelligent exploratory process partitions a complete vector state space into disjoint subspaces to create working hypotheses quantified by similarities and differences observed between two groups of labeled data streams. Data streams are typically time sequenced, and may exhibit complex spatio-temporal patterns. For example, given atomic trajectories from molecular dynamics simulation, the machine's task is to quantify dynamical mechanisms that promote function by comparing protein mutants, some known to function while others are nonfunctional. Utilizing synthetic two-dimensional molecules that mimic the dynamics of functional and nonfunctional proteins, biases are identified and controlled in both the machine learning model and selected training data under different contexts. The refinement of a working hypothesis converges to a statistically robust multivariate perception of the data based on a context-dependent perspective. Including diverse perspectives during data exploration enhances interpretability of the multivariate characterization of similarities and differences.
Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not. This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.
The aim of this paper is to offer the first systematic exploration and definition of equivalent causal models in the context where both models are not made up of the same variables. The idea is that two models are equivalent when they agree on all "essential" causal information that can be expressed using their common variables. I do so by focussing on the two main features of causal models, namely their structural relations and their functional relations. In particular, I define several relations of causal ancestry and several relations of causal sufficiency, and require that the most general of these relations are preserved across equivalent models.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.