亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sound event detection (SED) often suffers from the data deficiency problem. The recent baseline system in the DCASE2023 challenge task 4 leverages the large pretrained self-supervised learning (SelfSL) models to mitigate such restriction, where the pretrained models help to produce more discriminative features for SED. However, the pretrained models are regarded as a frozen feature extractor in the challenge baseline system and most of the challenge submissions, and fine-tuning of the pretrained models has been rarely studied. In this work, we study the fine-tuning method of the pretrained models for SED. We first introduce ATST-Frame, our newly proposed SelfSL model, to the SED system. ATST-Frame was especially designed for learning frame-level representations of audio signals and obtained state-of-the-art (SOTA) performances on a series of downstream tasks. We then propose a fine-tuning method for ATST-Frame using both (in-domain) unlabelled and labelled SED data. Our experiments show that, the proposed method overcomes the overfitting problem when fine-tuning the large pretrained network, and our SED system obtains new SOTA results of 0.587/0.812 PSDS1/PSDS2 scores on the DCASE challenge task 4 dataset.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · LORA · Extensibility · 可約的 · 評論員 ·
2023 年 10 月 31 日

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

Uncertainty quantification using Bayesian methods is a growing area of research. Bayesian model mixing (BMM) is a recent development which combines the predictions from multiple models such that each model's best qualities are preserved in the final result. Practical tools and analysis suites that facilitate such methods are therefore needed. Taweret introduces BMM to existing Bayesian uncertainty quantification efforts. Currently Taweret contains three individual Bayesian model mixing techniques, each pertaining to a different type of problem structure; we encourage the future inclusion of user-developed mixing methods. Taweret's first use case is in nuclear physics, but the package has been structured such that it should be adaptable to any research engaged in model comparison or model mixing.

Ensuring trust and accountability in Artificial Intelligence systems demands explainability of its outcomes. Despite significant progress in Explainable AI, human biases still taint a substantial portion of its training data, raising concerns about unfairness or discriminatory tendencies. Current approaches in the field of Algorithmic Fairness focus on mitigating such biases in the outcomes of a model, but few attempts have been made to try to explain \emph{why} a model is biased. To bridge this gap between the two fields, we propose a comprehensive approach that uses optimal transport theory to uncover the causes of discrimination in Machine Learning applications, with a particular emphasis on image classification. We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions. This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence \emph{on} the bias. Taking advantage of this interplay of enforcing and explaining fairness, our method hold significant implications for the development of trustworthy and unbiased AI systems, fostering transparency, accountability, and fairness in critical decision-making scenarios across diverse domains.

Confidence intervals (CI) for the IPW estimators of the ATT and ATO might not always yield conservative CIs when using the 'robust sandwich variance' estimator. In this manuscript, we identify scenarios where this variance estimator can be employed to derive conservative CIs. Specifically, for the ATT, a conservative CI can be derived when there's a homogeneous treatment effect or the interaction effect surpasses the effect from the covariates alone. For the ATO, conservative CIs can be derived under certain conditions, such as when there are homogeneous treatment effects, when there exists significant treatment-confounder interactions, or when there's a large number of members in the control groups.

We study the problem of enumerating results from a query over a compressed document. The model we use for compression are straight-line programs (SLPs), which are defined by a context-free grammar that produces a single string. For our queries, we use a model called Annotated Automata, an extension of regular automata that allows annotations on letters. This model extends the notion of Regular Spanners as it allows arbitrarily long outputs. Our main result is an algorithm that evaluates such a query by enumerating all results with output-linear delay after a preprocessing phase which takes linear time on the size of the SLP, and cubic time over the size of the automaton. This is an improvement over Schmid and Schweikardt's result, which, with the same preprocessing time, enumerates with a delay that is logarithmic on the size of the uncompressed document. We achieve this through a persistent data structure named Enumerable Compact Sets with Shifts which guarantees output-linear delay under certain restrictions. These results imply constant-delay enumeration algorithms in the context of regular spanners. Further, we use an extension of annotated automata which utilizes succinctly encoded annotations to save an exponential factor from previous results that dealt with constant-delay enumeration over vset automata. Lastly, we extend our results in the same fashion Schmid and Schweikardt did to allow complex document editing while maintaining the constant delay guarantee.

Gibbs samplers are popular algorithms to approximate posterior distributions arising from Bayesian hierarchical models. Despite their popularity and good empirical performances, however, there are still relatively few quantitative results on their convergence properties, e.g. much less than for gradient-based sampling methods. In this work we analyse the behaviour of total variation mixing times of Gibbs samplers targeting hierarchical models using tools from Bayesian asymptotics. We obtain dimension-free convergence results under random data-generating assumptions, for a broad class of two-level models with generic likelihood function. Specific examples with Gaussian, binomial and categorical likelihoods are discussed.

Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building.

Existing multi-stage clustering methods independently learn the salient features from multiple views and then perform the clustering task. Particularly, multi-view clustering (MVC) has attracted a lot of attention in multi-view or multi-modal scenarios. MVC aims at exploring common semantics and pseudo-labels from multiple views and clustering in a self-supervised manner. However, limited by noisy data and inadequate feature learning, such a clustering paradigm generates overconfident pseudo-labels that mis-guide the model to produce inaccurate predictions. Therefore, it is desirable to have a method that can correct this pseudo-label mistraction in multi-stage clustering to avoid the bias accumulation. To alleviate the effect of overconfident pseudo-labels and improve the generalization ability of the model, this paper proposes a novel multi-stage deep MVC framework where multi-view self-distillation (DistilMVC) is introduced to distill dark knowledge of label distribution. Specifically, in the feature subspace at different hierarchies, we explore the common semantics of multiple views through contrastive learning and obtain pseudo-labels by maximizing the mutual information between views. Additionally, a teacher network is responsible for distilling pseudo-labels into dark knowledge, supervising the student network and improving its predictive capabilities to enhance the robustness. Extensive experiments on real-world multi-view datasets show that our method has better clustering performance than state-of-the-art methods.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

Abstract reasoning is a key ability for an intelligent system. Large language models (LMs) achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect. For example, human reasoning is affected by our real-world knowledge and beliefs, and shows notable "content effects"; humans reason more reliably when the semantic content of a problem supports the correct logical inferences. These content-entangled reasoning patterns play a central role in debates about the fundamental nature of human intelligence. Here, we investigate whether language models $\unicode{x2014}$ whose prior expectations capture some aspects of human knowledge $\unicode{x2014}$ similarly mix content into their answers to logical problems. We explored this question across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task. We evaluate state of the art large language models, as well as humans, and find that the language models reflect many of the same patterns observed in humans across these tasks $\unicode{x2014}$ like humans, models answer more accurately when the semantic content of a task supports the logical inferences. These parallels are reflected both in answer patterns, and in lower-level features like the relationship between model answer distributions and human response times. Our findings have implications for understanding both these cognitive effects in humans, and the factors that contribute to language model performance.

北京阿比特科技有限公司