Consider a principal who wants to search through a space of stochastic solutions for one maximizing their utility. If the principal cannot conduct this search on their own, they may instead delegate this problem to an agent with distinct and potentially misaligned utilities. This is called delegated search, and the principal in such problems faces a mechanism design problem in which they must incentivize the agent to find and propose a solution maximizing the principal's expected utility. Following prior work in this area, we consider mechanisms without payments and aim to achieve a multiplicative approximation of the principal's utility when they solve the problem without delegation. In this work, we investigate a natural and recently studied generalization of this model to multiple agents and find nearly tight bounds on the principal's approximation as the number of agents increases. As one might expect, this approximation approaches 1 with increasing numbers of agents, but, somewhat surprisingly, we show that this is largely not due to direct competition among agents.
High-efficient image compression is a critical requirement. In several scenarios where multiple modalities of data are captured by different sensors, the auxiliary information from other modalities are not fully leveraged by existing image-only codecs, leading to suboptimal compression efficiency. In this paper, we increase image compression performance with the assistance of point cloud, which is widely adopted in the area of autonomous driving. We first unify the data representation for both modalities to facilitate data processing. Then, we propose the point cloud-assisted neural image codec (PCA-NIC) to enhance the preservation of image texture and structure by utilizing the high-dimensional point cloud information. We further introduce a multi-modal feature fusion transform module (MMFFT) to capture more representative image features, remove redundant information between channels and modalities that are not relevant to the image content. Our work is the first to improve image compression performance using point cloud and achieves state-of-the-art performance.
Hypertree decompositions provide a way to evaluate Conjunctive Queries (CQs) in polynomial time, where the exponent of this polynomial is determined by the width of the decomposition. In theory, the goal of efficient CQ evaluation therefore has to be a minimisation of the width. However, in practical settings, it turns out that there are also other properties of a decomposition that influence the performance of query evaluation. It is therefore of interest to restrict the computation of decompositions by constraints and to guide this computation by preferences. To this end, we propose a novel framework based on candidate tree decompositions, which allows us to introduce soft hypertree width (shw). This width measure is a relaxation of hypertree width (hw); it is never greater than hw and, in some cases, shw may actually be lower than hw. ost importantly, shw preserves the tractability of deciding if a given CQ is below some fixed bound, while offering more algorithmic flexibility. In particular, it provides a natural way to incorporate preferences A prototype implementation and preliminary experiments confirm that this novel framework can indeed have a practical impact on query evaluation.
Information disclosure can compromise privacy when revealed information is correlated with private information. We consider the notion of inferential privacy, which measures privacy leakage by bounding the inferential power a Bayesian adversary can gain by observing a released signal. Our goal is to devise an inferentially-private private information structure that maximizes the informativeness of the released signal, following the Blackwell ordering principle, while adhering to inferential privacy constraints. To achieve this, we devise an efficient release mechanism that achieves the inferentially-private Blackwell optimal private information structure for the setting where the private information is binary. Additionally, we propose a programming approach to compute the optimal structure for general cases given the utility function. The design of our mechanisms builds on our geometric characterization of the Blackwell-optimal disclosure mechanisms under privacy constraints, which may be of independent interest.
Sign stochastic gradient descent (signSGD) is a communication-efficient method that transmits only the sign of stochastic gradients for parameter updating. Existing literature has demonstrated that signSGD can achieve a convergence rate of $\mathcal{O}(d^{1/2}T^{-1/4})$, where $d$ represents the dimension and $T$ is the iteration number. In this paper, we improve this convergence rate to $\mathcal{O}(d^{1/2}T^{-1/3})$ by introducing the Sign-based Stochastic Variance Reduction (SSVR) method, which employs variance reduction estimators to track gradients and leverages their signs to update. For finite-sum problems, our method can be further enhanced to achieve a convergence rate of $\mathcal{O}(m^{1/4}d^{1/2}T^{-1/2})$, where $m$ denotes the number of component functions. Furthermore, we investigate the heterogeneous majority vote in distributed settings and introduce two novel algorithms that attain improved convergence rates of $\mathcal{O}(d^{1/2}T^{-1/2} + dn^{-1/2})$ and $\mathcal{O}(d^{1/4}T^{-1/4})$ respectively, outperforming the previous results of $\mathcal{O}(dT^{-1/4} + dn^{-1/2})$ and $\mathcal{O}(d^{3/8}T^{-1/8})$, where $n$ represents the number of nodes. Numerical experiments across different tasks validate the effectiveness of our proposed methods.
Surface parameterization is a fundamental concept in fields such as differential geometry and computer graphics. It involves mapping a surface in three-dimensional space onto a two-dimensional parameter space. This process allows for the systematic representation and manipulation of surfaces of complicated shapes by simplifying them into a manageable planar domain. In this paper, we propose a new iterative algorithm for computing the parameterization of simply connected open surfaces that achieves an optimal balance between angle and area distortions. We rigorously prove that the iteration in our algorithm converges globally, and numerical results demonstrate that the resulting mappings are bijective and effectively balance angular and area accuracy across various triangular meshes. Additionally, we present the practical usefulness of the proposed algorithm by applying it to represent surfaces as geometry images.
Cooperative multi-agent systems can be naturally used to model many real world problems, such as network packet routing and the coordination of autonomous vehicles. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.