亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While the body of research directed towards constructing and generating clarifying questions in mixed-initiative conversational search systems is vast, research aimed at processing and comprehending users' answers to such questions is scarce. To this end, we present a simple yet effective method for processing answers to clarifying questions, moving away from previous work that simply appends answers to the original query and thus potentially degrades retrieval performance. Specifically, we propose a classifier for assessing usefulness of the prompted clarifying question and an answer given by the user. Useful questions or answers are further appended to the conversation history and passed to a transformer-based query rewriting module. Results demonstrate significant improvements over strong non-mixed-initiative baselines. Furthermore, the proposed approach mitigates the performance drops when non useful questions and answers are utilized.

相關內容

As cyber attacks continue to increase in frequency and sophistication, detecting malware has become a critical task for maintaining the security of computer systems. Traditional signature-based methods of malware detection have limitations in detecting complex and evolving threats. In recent years, machine learning (ML) has emerged as a promising solution to detect malware effectively. ML algorithms are capable of analyzing large datasets and identifying patterns that are difficult for humans to identify. This paper presents a comprehensive review of the state-of-the-art ML techniques used in malware detection, including supervised and unsupervised learning, deep learning, and reinforcement learning. We also examine the challenges and limitations of ML-based malware detection, such as the potential for adversarial attacks and the need for large amounts of labeled data. Furthermore, we discuss future directions in ML-based malware detection, including the integration of multiple ML algorithms and the use of explainable AI techniques to enhance the interpret ability of ML-based detection systems. Our research highlights the potential of ML-based techniques to improve the speed and accuracy of malware detection, and contribute to enhancing cybersecurity

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

Hex-dominant mesh generation has received significant attention in recent research due to its superior robustness compared to pure hex-mesh generation techniques. In this work, we introduce the first structure for analyzing hex-dominant meshes. This structure builds on the base complex of pure hex-meshes but incorporates the non-hex elements for a more comprehensive and complete representation. We provide its definition and describe its construction steps. Based on this structure, we present an extraction and categorization of sheets using advanced graph matching techniques to handle the non-hex elements. This enables us to develop an enhanced visual analysis of the structure for any hex-dominant meshes.We apply this structure-based visual analysis to compare hex-dominant meshes generated by different methods to study their advantages and disadvantages. This complements the standard quality metric based on the non-hex element percentage for hex-dominant meshes. Moreover, we propose a strategy to extract a cleaned (optimized) valence-based singularity graph wireframe to analyze the structure for both mesh and sheets. Our results demonstrate that the proposed hybrid base complex provides a coarse representation for mesh element, and the proposed valence singularity graph wireframe provides a better internal visualization of hex-dominant meshes.

Probabilistic model checking is a widely used formal verification technique to automatically verify qualitative and quantitative properties for probabilistic models. However, capturing such systems, writing corresponding properties, and verifying them require domain knowledge. This makes it not accessible for researchers and engineers who may not have the required knowledge. Previous studies have extended UML activity diagrams (ADs), developed transformations, and implemented accompanying tools for automation. The research, however, is incomprehensive and not fully open, which makes it hard to be evaluated, extended, adapted, and accessed. In this paper, we propose a comprehensive verification framework for ADs, including a new profile for probability, time, and quality annotations, a semantics interpretation of ADs in three Markov models, and a set of transformation rules from activity diagrams to the PRISM language, supported by PRISM and Storm. Most importantly, we developed algorithms for transformation and implemented them in a tool, called QASCAD, using model-based techniques, for fully automated verification. We evaluated one case study where multiple robots are used for delivery in a hospital and further evaluated six other examples from the literature. With all these together, this work makes noteworthy contributions to the verification of ADs by improving evaluation, extensibility, adaptability, and accessibility.

Traditional regulations of chemical exposure tend to focus on single exposures, overlooking the potential amplified toxicity due to multiple concurrent exposures. We are interested in understanding the average outcome if exposures were limited to fall under a multivariate threshold. Because threshold levels are often unknown \textit{a priori}, we provide an algorithm that finds exposure threshold levels where the expected outcome is maximized or minimized. Because both identifying thresholds and estimating policy effects on the same data would lead to overfitting bias, we also provide a data-adaptive estimation framework, which allows for both threshold discovery and policy estimation. Simulation studies show asymptotic convergence to the optimal exposure region and to the true effect of an intervention. We demonstrate how our method identifies true interactions in a public synthetic mixture data set. Finally, we applied our method to NHANES data to discover metal exposures that have the most harmful effects on telomere length. We provide an implementation in the \texttt{CVtreeMLE} R package.

We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at //github.com/consequentai/fneval/.

This study introduces a nonparametric definition of interaction and provides an approach to both interaction discovery and efficient estimation of this parameter. Using stochastic shift interventions and ensemble machine learning, our approach identifies and quantifies interaction effects through a model-independent target parameter, estimated via targeted maximum likelihood and cross-validation. This method contrasts the expected outcomes of joint interventions with those of individual interventions. Validation through simulation and application to the National Institute of Environmental Health Sciences Mixtures Workshop data demonstrate the efficacy of our method in detecting true interaction directions and its consistency in identifying significant impacts of furan exposure on leukocyte telomere length. Our method, called SuperNOVA, advances the ability to analyze multiexposure interactions within high-dimensional data, offering significant methodological improvements to understand complex exposure dynamics in health research. We provide peer-reviewed open-source software that employs or proposed methodology in the \texttt{SuperNOVA} R package.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司