亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the connections between tempering (for Sequential Monte Carlo; SMC) and entropic mirror descent to sample from a target probability distribution whose unnormalized density is known. We establish that tempering SMC is a numerical approximation of entropic mirror descent applied to the Kullback-Leibler (KL) divergence and obtain convergence rates for the tempering iterates. Our result motivates the tempering iterates from an optimization point of view, showing that tempering can be used as an alternative to Langevin-based algorithms to minimize the KL divergence. We exploit the connection between tempering and mirror descent iterates to justify common practices in SMC and propose improvements to algorithms in literature.

相關內容

Through past experiences deploying what we call usable ML (one step beyond explainable ML, including both explanations and other augmenting information) to real-world domains, we have learned three key lessons. First, many organizations are beginning to hire people who we call ``bridges'' because they bridge the gap between ML developers and domain experts, and these people fill a valuable role in developing usable ML applications. Second, a configurable system that enables easily iterating on usable ML interfaces during collaborations with bridges is key. Finally, there is a need for continuous, in-deployment evaluations to quantify the real-world impact of usable ML. Throughout this paper, we apply these lessons to the task of wind turbine monitoring, an essential task in the renewable energy domain. Turbine engineers and data analysts must decide whether to perform costly in-person investigations on turbines to prevent potential cases of brakepad failure, and well-tuned usable ML interfaces can aid with this decision-making process. Through the applications of our lessons to this task, we hope to demonstrate the potential real-world impact of usable ML in the renewable energy domain.

We present Self-Adaptive Robust Attention for Robotics Transformers (SARA-RT): a new paradigm for addressing the emerging challenge of scaling up Robotics Transformers (RT) for on-robot deployment. SARA-RT relies on the new method of fine-tuning proposed by us, called up-training. It converts pre-trained or already fine-tuned Transformer-based robotic policies of quadratic time complexity (including massive billion-parameter vision-language-action models or VLAs), into their efficient linear-attention counterparts maintaining high quality. We demonstrate the effectiveness of SARA-RT by speeding up: (a) the class of recently introduced RT-2 models, the first VLA robotic policies pre-trained on internet-scale data, as well as (b) Point Cloud Transformer (PCT) robotic policies operating on large point clouds. We complement our results with the rigorous mathematical analysis providing deeper insight into the phenomenon of SARA.

This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{//github.com/vicgalle/distilled-self-critique}.

This paper addresses the output-sensitive complexity for linear multi-objective integer minimum cost flow (MOIMCF) problems and provides insights about the time complexity for enumerating all supported nondominated vectors. The paper shows that there can not exist an output-polynomial time algorithm for the enumeration of all supported nondominated vectors that determine the vectors in an ordered way in the outcome space unless NP = P. Moreover, novel methods for identifying supported nondominated vectors in bi-objective minimum cost flow (BOIMCF) problems are proposed, accompanied by a numerical comparison between decision- and objective-space methods. A novel, equivalent and more compact formulation of the minimum cost flow ILP formulation used in the e-constrained-scalarization approach is introduced, demonstrating enhanced efficiency in the numerical tests

This paper studies the qualitative behavior and robustness of two variants of Minimal Random Code Learning (MIRACLE) used to compress variational Bayesian neural networks. MIRACLE implements a powerful, conditionally Gaussian variational approximation for the weight posterior $Q_{\mathbf{w}}$ and uses relative entropy coding to compress a weight sample from the posterior using a Gaussian coding distribution $P_{\mathbf{w}}$. To achieve the desired compression rate, $D_{\mathrm{KL}}[Q_{\mathbf{w}} \Vert P_{\mathbf{w}}]$ must be constrained, which requires a computationally expensive annealing procedure under the conventional mean-variance (Mean-Var) parameterization for $Q_{\mathbf{w}}$. Instead, we parameterize $Q_{\mathbf{w}}$ by its mean and KL divergence from $P_{\mathbf{w}}$ to constrain the compression cost to the desired value by construction. We demonstrate that variational training with Mean-KL parameterization converges twice as fast and maintains predictive performance after compression. Furthermore, we show that Mean-KL leads to more meaningful variational distributions with heavier tails and compressed weight samples which are more robust to pruning.

We propose a novel Neural Radiance Field (NeRF) representation for non-opaque scenes that allows fast inference by utilizing textured polygons. Despite the high-quality novel view rendering that NeRF provides, a critical limitation is that it relies on volume rendering that can be computationally expensive and does not utilize the advancements in modern graphics hardware. Existing methods for this problem fall short when it comes to modelling volumetric effects as they rely purely on surface rendering. We thus propose to model the scene with polygons, which can then be used to obtain the quadrature points required to model volumetric effects, and also their opacity and colour from the texture. To obtain such polygonal mesh, we train a specialized field whose zero-crossings would correspond to the quadrature points when volume rendering, and perform marching cubes on this field. We then rasterize the polygons and utilize the fragment shaders to obtain the final colour image. Our method allows rendering on various devices and easy integration with existing graphics frameworks while keeping the benefits of volume rendering alive.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司