亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The current trend in developing machine learning models for reading comprehension and logical reasoning tasks is focused on improving the models' abilities to understand and utilize logical rules. This work focuses on providing a novel loss function and accompanying model architecture that has more interpretable components than some other models by representing a common strategy employed by humans when given reading comprehension and logical reasoning tasks. This strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer without full knowledge of the information required to solve the question. We examine the effectiveness of applying such a strategy to train transfer learning models to solve reading comprehension and logical reasoning questions. The models were evaluated on the ReClor dataset, a challenging reading comprehension and logical reasoning benchmark. We propose the polytuplet loss function, an extension of the triplet loss function, to ensure prioritization of learning the relative correctness of answer choices over learning the true accuracy of each choice. Our results indicate that models employing polytuplet loss outperform existing baseline models. Although polytuplet loss is a promising alternative to other contrastive loss functions, further research is required to quantify the benefits it may present.

相關內容

包括微軟、CMU、Stanford在內的頂級人工智能專家和學者們正在研究更復雜的任務:讓機器像人類一樣閱讀文本,進而根據對該文本的理解來回答問題。這種閱讀理解就像是讓計算機來做我們高考英語的閱讀理解題。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The robust constrained Markov decision process (RCMDP) is a recent task-modelling framework for reinforcement learning that incorporates behavioural constraints and that provides robustness to errors in the transition dynamics model through the use of an uncertainty set. Simulating RCMDPs requires computing the worst-case dynamics based on value estimates for each state, an approach which has previously been used in the Robust Constrained Policy Gradient (RCPG). Highlighting potential downsides of RCPG such as not robustifying the full constrained objective and the lack of incremental learning, this paper introduces two algorithms, called RCPG with Robust Lagrangian and Adversarial RCPG. RCPG with Robust Lagrangian modifies RCPG by taking the worst-case dynamics based on the Lagrangian rather than either the value or the constraint. Adversarial RCPG also formulates the worst-case dynamics based on the Lagrangian but learns this directly and incrementally as an adversarial policy through gradient descent rather than indirectly and abruptly through constrained optimisation on a sorted value list. A theoretical analysis first derives the Lagrangian policy gradient for the policy optimisation of both proposed algorithms and then the adversarial policy gradient to learn the adversary for Adversarial RCPG. Empirical experiments injecting perturbations in inventory management and safe navigation tasks demonstrate the competitive performance of both algorithms compared to traditional RCPG variants as well as non-robust and non-constrained ablations. In particular, Adversarial RCPG ranks among the top two performing algorithms on all tests.

Numerical reasoning is vital for natural language processing models to understand and process numerical information in real-world scenarios. Most current methods first generate the Intermediate Meaning Representations (IMRs) of questions and then generate answers. Current SOTA methods generate programs as IMRs with large language models (LLMs). Intuitively, equations have fewer restrictions and closer semantics to the question than programs, leading to higher generation accuracy. However, current LLMs generate equations worse than programs, where we assume that the equation data is rare in pre-training data compared to programs. So in this paper, we try to use equations as IMRs to solve the numerical reasoning task by addressing two problems: (1) Theoretically, how to prove that the equation is an IMR with higher generation accuracy than programs; (2) Empirically, how to improve the generation accuracy of equations with LLMs. For the first problem, we propose and prove a proposition to theoretically compare the generation accuracy of different IMRs. For the second problem, we present a method called Boosting Numerical Reason\textbfing by Decomposing the Generation of Equations (Bridge), which can improve the accuracy of LLMs in generating equations as IMRs by reducing the tendency of generating constant expressions and programs. Our method improves the performance by 2.2%, 0.9%, and 1.7% on GSM8K, SVAMP, and Algebra datasets compared to the previous state-of-the-art methods under the single reasoning path setting. Our codes and prompts are released in //github.com/zirui-HIT/Bridge_for_Numerical_Reasoning.

The performance of learning models heavily relies on the availability and adequacy of training data. To address the dataset adequacy issue, researchers have extensively explored data augmentation (DA) as a promising approach. DA generates new data instances through transformations applied to the available data, thereby increasing dataset size and variability. This approach has enhanced model performance and accuracy, particularly in addressing class imbalance problems in classification tasks. However, few studies have explored DA for the Arabic language, relying on traditional approaches such as paraphrasing or noising-based techniques. In this paper, we propose a new Arabic DA method that employs the recent powerful modeling technique, namely the AraGPT-2, for the augmentation process. The generated sentences are evaluated in terms of context, semantics, diversity, and novelty using the Euclidean, cosine, Jaccard, and BLEU distances. Finally, the AraBERT transformer is used on sentiment classification tasks to evaluate the classification performance of the augmented Arabic dataset. The experiments were conducted on four sentiment Arabic datasets: AraSarcasm, ASTD, ATT, and MOVIE. The selected datasets vary in size, label number, and unbalanced classes. The results show that the proposed methodology enhanced the Arabic sentiment text classification on all datasets with an increase in F1 score by 4% in AraSarcasm, 6% in ASTD, 9% in ATT, and 13% in MOVIE.

Continual learning aims to learn a model from a continuous stream of data, but it mainly assumes a fixed number of data and tasks with clear task boundaries. However, in real-world scenarios, the number of input data and tasks is constantly changing in a statistical way, not a static way. Although recently introduced incremental learning scenarios having blurry task boundaries somewhat address the above issues, they still do not fully reflect the statistical properties of real-world situations because of the fixed ratio of disjoint and blurry samples. In this paper, we propose a new Stochastic incremental Blurry task boundary scenario, called Si-Blurry, which reflects the stochastic properties of the real-world. We find that there are two major challenges in the Si-Blurry scenario: (1) inter- and intra-task forgettings and (2) class imbalance problem. To alleviate them, we introduce Mask and Visual Prompt tuning (MVP). In MVP, to address the inter- and intra-task forgetting issues, we propose a novel instance-wise logit masking and contrastive visual prompt tuning loss. Both of them help our model discern the classes to be learned in the current batch. It results in consolidating the previous knowledge. In addition, to alleviate the class imbalance problem, we introduce a new gradient similarity-based focal loss and adaptive feature scaling to ease overfitting to the major classes and underfitting to the minor classes. Extensive experiments show that our proposed MVP significantly outperforms the existing state-of-the-art methods in our challenging Si-Blurry scenario.

Deep learning-based surrogate models have been widely applied in geological carbon storage (GCS) problems to accelerate the prediction of reservoir pressure and CO2 plume migration. Large amounts of data from physics-based numerical simulators are required to train a model to accurately predict the complex physical behaviors associated with this process. In practice, the available training data are always limited in large-scale 3D problems due to the high computational cost. Therefore, we propose to use a multi-fidelity Fourier Neural Operator to solve large-scale GCS problems with more affordable multi-fidelity training datasets. The Fourier Neural Operator has a desirable grid-invariant property, which simplifies the transfer learning procedure between datasets with different discretization. We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells. The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs. We further test the generalizability of the multi-fidelity model on a same reservoir model with a finer discretization of 1 million grid cells. This case was made more challenging by employing high-fidelity and low-fidelity datasets generated by different geostatistical models and reservoir simulators. We observe that the multi-fidelity FNO model can predict pressure fields with reasonable accuracy even when the high-fidelity data are extremely limited.

As responsible AI gains importance in machine learning algorithms, properties such as fairness, adversarial robustness, and causality have received considerable attention in recent years. However, despite their individual significance, there remains a critical gap in simultaneously exploring and integrating these properties. In this paper, we propose a novel approach that examines the relationship between individual fairness, adversarial robustness, and structural causal models in heterogeneous data spaces, particularly when dealing with discrete sensitive attributes. We use causal structural models and sensitive attributes to create a fair metric and apply it to measure semantic similarity among individuals. By introducing a novel causal adversarial perturbation and applying adversarial training, we create a new regularizer that combines individual fairness, causality, and robustness in the classifier. Our method is evaluated on both real-world and synthetic datasets, demonstrating its effectiveness in achieving an accurate classifier that simultaneously exhibits fairness, adversarial robustness, and causal awareness.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司