Minotaur is a superoptimizer for LLVM's intermediate representation that focuses on integer SIMD instructions, both portable and specific to x86-64. We created it to attack problems in finding missing peephole optimizations for SIMD instructions-this is challenging because there are many such instructions and they can be semantically complex. Minotaur runs a hybrid synthesis algorithm where instructions are enumerated concretely, but literal constants are generated by the solver. We use Alive2 as a verification engine; to do this we modified it to support synthesis and also to support a large subset of Intel's vector instruction sets (SSE, AVX, AVX2, and AVX-512). Minotaur finds many profitable optimizations that are missing from LLVM. It achieves limited speedups on the integer parts of SPEC CPU2017, around 1.3%, and it speeds up the test suite for the libYUV library by 2.2%, on average, and by 1.64x maximum, when targeting an Intel Cascade Lake processor.
Perceptually Aligned Gradients (PAG) refer to an intriguing property observed in robust image classification models, wherein their input gradients align with human perception and pose semantic meanings. While this phenomenon has gained significant research attention, it was solely studied in the context of unimodal vision-only architectures. In this work, we extend the study of PAG to Vision-Language architectures, which form the foundations for diverse image-text tasks and applications. Through an adversarial robustification finetuning of CLIP, we demonstrate that robust Vision-Language models exhibit PAG in contrast to their vanilla counterparts. This work reveals the merits of CLIP with PAG (CLIPAG) in several vision-language generative tasks. Notably, we show that seamlessly integrating CLIPAG in a "plug-n-play" manner leads to substantial improvements in vision-language generative applications. Furthermore, leveraging its PAG property, CLIPAG enables text-to-image generation without any generative model, which typically requires huge generators.
Progress in High-Performance Computing in general, and High-Performance Graph Processing in particular, is highly dependent on the availability of publicly-accessible, relevant, and realistic data sets. To ensure continuation of this progress, we (i) investigate and optimize the process of generating large sequence similarity graphs as an HPC challenge and (ii) demonstrate this process in creating MS-BioGraphs, a new family of publicly available real-world edge-weighted graph datasets with up to $2.5$ trillion edges, that is, $6.6$ times greater than the largest graph published recently. The largest graph is created by matching (i.e., all-to-all similarity aligning) $1.7$ billion protein sequences. The MS-BioGraphs family includes also seven subgraphs with different sizes and direction types. We describe two main challenges we faced in generating large graph datasets and our solutions, that are, (i) optimizing data structures and algorithms for this multi-step process and (ii) WebGraph parallel compression technique. We present a comparative study of structural characteristics of MS-BioGraphs. The datasets are available online on //blogs.qub.ac.uk/DIPSA/MS-BioGraphs .
Accurate and robust correspondence matching is of utmost importance for various 3D computer vision tasks. However, traditional explicit programming-based methods often struggle to handle challenging scenarios, and deep learning-based methods require large well-labeled datasets for network training. In this article, we introduce Epipolar-Constrained Cascade Correspondence (E3CM), a novel approach that addresses these limitations. Unlike traditional methods, E3CM leverages pre-trained convolutional neural networks to match correspondence, without requiring annotated data for any network training or fine-tuning. Our method utilizes epipolar constraints to guide the matching process and incorporates a cascade structure for progressive refinement of matches. We extensively evaluate the performance of E3CM through comprehensive experiments and demonstrate its superiority over existing methods. To promote further research and facilitate reproducibility, we make our source code publicly available at //mias.group/E3CM.
Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.