亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian causal structure learning aims to learn a posterior distribution over directed acyclic graphs (DAGs), and the mechanisms that define the relationship between parent and child variables. By taking a Bayesian approach, it is possible to reason about the uncertainty of the causal model. The notion of modelling the uncertainty over models is particularly crucial for causal structure learning since the model could be unidentifiable when given only a finite amount of observational data. In this paper, we introduce a novel method to jointly learn the structure and mechanisms of the causal model using Variational Bayes, which we call Variational Bayes-DAG-GFlowNet (VBG). We extend the method of Bayesian causal structure learning using GFlowNets to learn not only the posterior distribution over the structure, but also the parameters of a linear-Gaussian model. Our results on simulated data suggest that VBG is competitive against several baselines in modelling the posterior over DAGs and mechanisms, while offering several advantages over existing methods, including the guarantee to sample acyclic graphs, and the flexibility to generalize to non-linear causal mechanisms.

相關內容

Density-based distances (DBDs) offer an elegant solution to the problem of metric learning. By defining a Riemannian metric which increases with decreasing probability density, shortest paths naturally follow the data manifold and points are clustered according to the modes of the data. We show that existing methods to estimate Fermat distances, a particular choice of DBD, suffer from poor convergence in both low and high dimensions due to i) inaccurate density estimates and ii) reliance on graph-based paths which are increasingly rough in high dimensions. To address these issues, we propose learning the densities using a normalizing flow, a generative model with tractable density estimation, and employing a smooth relaxation method using a score model initialized from a graph-based proposal. Additionally, we introduce a dimension-adapted Fermat distance that exhibits more intuitive behavior when scaled to high dimensions and offers better numerical properties. Our work paves the way for practical use of density-based distances, especially in high-dimensional spaces.

Understanding the molecules and their textual descriptions via molecule language models (MoLM) recently got a surge of interest among researchers. However, unique challenges exist in the field of MoLM due to 1) a limited amount of molecule-text paired data and 2) missing expertise that occurred due to the specialized areas of focus among the experts. To this end, we propose AMOLE, which 1) augments molecule-text pairs with structural similarity preserving loss, and 2) transfers the expertise between the molecules. Extensive experiments on various downstream tasks demonstrate the superiority of AMOLE in comprehending molecules and their descriptions, highlighting its potential for application in real-world drug discovery.

Federated graph learning (FedGL) is an emerging federated learning (FL) framework that extends FL to learn graph data from diverse sources. FL for non-graph data has shown to be vulnerable to backdoor attacks, which inject a shared backdoor trigger into the training data such that the trained backdoored FL model can predict the testing data containing the trigger as the attacker desires. However, FedGL against backdoor attacks is largely unexplored, and no effective defense exists. In this paper, we aim to address such significant deficiency. First, we propose an effective, stealthy, and persistent backdoor attack on FedGL. Our attack uses a subgraph as the trigger and designs an adaptive trigger generator that can derive the effective trigger location and shape for each graph. Our attack shows that empirical defenses are hard to detect/remove our generated triggers. To mitigate it, we further develop a certified defense for any backdoored FedGL model against the trigger with any shape at any location. Our defense involves carefully dividing a testing graph into multiple subgraphs and designing a majority vote-based ensemble classifier on these subgraphs. We then derive the deterministic certified robustness based on the ensemble classifier and prove its tightness. We extensively evaluate our attack and defense on six graph datasets. Our attack results show our attack can obtain > 90% backdoor accuracy in almost all datasets. Our defense results show, in certain cases, the certified accuracy for clean testing graphs against an arbitrary trigger with size 20 can be close to the normal accuracy under no attack, while there is a moderate gap in other cases. Moreover, the certified backdoor accuracy is always 0 for backdoored testing graphs generated by our attack, implying our defense can fully mitigate the attack. Source code is available at: //github.com/Yuxin104/Opt-GDBA.

This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency.

In-situ sensing, in conjunction with learning models, presents a unique opportunity to address persistent defect issues in Additive Manufacturing (AM) processes. However, this integration introduces significant data privacy concerns, such as data leakage, sensor data compromise, and model inversion attacks, revealing critical details about part design, material composition, and machine parameters. Differential Privacy (DP) models, which inject noise into data under mathematical guarantees, offer a nuanced balance between data utility and privacy by obscuring traces of sensing data. However, the introduction of noise into learning models, often functioning as black boxes, complicates the prediction of how specific noise levels impact model accuracy. This study introduces the Differential Privacy-HyperDimensional computing (DP-HD) framework, leveraging the explainability of the vector symbolic paradigm to predict the noise impact on the accuracy of in-situ monitoring, safeguarding sensitive data while maintaining operational efficiency. Experimental results on real-world high-speed melt pool data of AM for detecting overhang anomalies demonstrate that DP-HD achieves superior operational efficiency, prediction accuracy, and robust privacy protection, outperforming state-of-the-art Machine Learning (ML) models. For example, when implementing the same level of privacy protection (with a privacy budget set at 1), our model achieved an accuracy of 94.43%, surpassing the performance of traditional models such as ResNet50 (52.30%), GoogLeNet (23.85%), AlexNet (55.78%), DenseNet201 (69.13%), and EfficientNet B2 (40.81%). Notably, DP-HD maintains high performance under substantial noise additions designed to enhance privacy, unlike current models that suffer significant accuracy declines under high privacy constraints.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司