亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventionally, piecewise polynomials have been used in the boundary elements method (BEM) to approximate unknown boundary values. Since infinitely smooth radial basis functions (RBFs) are more stable and accurate than the polynomials for high dimensional domains, the unknown values are approximated by the RBFs in this paper. Therefore, a new formulation of BEM, called radial BEM, is obtained. To calculate singular boundary integrals of the new method, we propose a new distribution for boundary source points that removes singularity from the integrals. Therefore, the boundary integrals are calculated precisely by the standard Gaussian quadrature rule (GQR) with n = 16 quadrature nodes. Several numerical examples are presented to check the efficiency of the radial BEM versus standard BEM and RBF collocation method for solving partial differential equations (PDEs). Analytical and numerical studies presented in this paper admit the radial BEM as a perfect version of BEM which will enrich the contribution of BEM and RBFs in solving PDEs, impressively.

相關內容

Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.

In this paper we consider the finite element approximation of Maxwell's problem and analyse the prescription of essential boundary conditions in a weak sense using Nitsche's method. To avoid indefiniteness of the problem, the original equations are augmented with the gradient of a scalar field that allows one to impose the zero divergence of the magnetic induction, even if the exact solution for this scalar field is zero. Two finite element approximations are considered, namely, one in which the approximation spaces are assumed to satisfy the appropriate inf-sup condition that render the standard Galerkin method stable, and another augmented and stabilised one that permits the use of finite element interpolations of arbitrary order. Stability and convergence results are provided for the two finite element formulations considered.

The fundamental computational issues in Bayesian inverse problems (BIPs) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such cost is to replace expensive model simulations by computationally efficient approximations using operator learning, motivated by recent progresses in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by fine-tuning the pre-trained approximate model during the inversion process with adaptive points selected by a greedy algorithm, which requires only a few forward model evaluations. To validate our approach, we adopt DeepOnet to construct the surrogate and use unscented Kalman inversion (UKI) to approximate the solution of BIPs, respectively. Furthermore, we present rigorous convergence guarantee in the linear case using the framework of UKI. We test the approach on several benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction diffusion problems. Numerical results demonstrate that our method can significantly reduce computational costs while maintaining inversion accuracy.

We present a new high-order accurate spectral element solution to the two-dimensional scalar Poisson equation subject to a general Robin boundary condition. The solution is based on a simplified version of the shifted boundary method employing a continuous arbitrary order $hp$-Galerkin spectral element method as the numerical discretization procedure. The simplification relies on a polynomial correction to avoid explicitly evaluating high-order partial derivatives from the Taylor series expansion, which traditionally have been used within the shifted boundary method. In this setting, we apply an extrapolation and novel interpolation approach to project the basis functions from the true domain onto the approximate surrogate domain. The resulting solution provides a method that naturally incorporates curved geometrical features of the domain, overcomes complex and cumbersome mesh generation, and avoids problems with small-cut-cells. Dirichlet, Neumann, and general Robin boundary conditions are enforced weakly through: i) a generalized Nitsche's method and ii) a generalized Aubin's method. For this, a consistent asymptotic preserving formulation of the embedded Robin formulations is presented. We present several numerical experiments and analysis of the algorithmic properties of the different weak formulations. With this, we include convergence studies under polynomial, $p$, increase of the basis functions, mesh, $h$, refinement, and matrix conditioning to highlight the spectral and algebraic convergence features, respectively. This is done to assess the influence of errors across variational formulations, polynomial order, mesh size, and mappings between the true and surrogate boundaries.

For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and; (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we propose solutions for problems (i) and (ii), backed up by theory and numerical experiments. Problem (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Problem (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the space of valid coefficients vectors. The coefficients vectors can then be selected using either a least squares approach or column subset selection.

We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lov\'asz theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we derive some general lower bounds for the vector chromatic number which may be of independent interest.

Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.

We construct a monotone continuous $Q^1$ finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint.

We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.

The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

北京阿比特科技有限公司