亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader, using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.

相關內容

A wide range of transformer-based language models have been proposed for information retrieval tasks. However, including transformer-based models in retrieval pipelines is often complex and requires substantial engineering effort. In this paper, we introduce Lightning IR, an easy-to-use PyTorch Lightning-based framework for applying transformer-based language models in retrieval scenarios. Lightning IR provides a modular and extensible architecture that supports all stages of a retrieval pipeline: from fine-tuning and indexing to searching and re-ranking. Designed to be scalable and reproducible, Lightning IR is available as open-source: //github.com/webis-de/lightning-ir.

Large language models (LLMs) have transformed the way computers understand and process human language, but using them effectively across different organizations remains still difficult. When organizations work together to improve LLMs, they face several main challenges. First, organizations hesitate to share their valuable data with others. Second, competition between organizations creates trust problems during collaboration. Third, new privacy laws require organizations to be able to delete specific data when requested, which is especially difficult when multiple organizations are learning from shared data. Traditional federated learning approaches do not address these interconnected challenges, particularly in scenarios where participants cannot fully trust each other or the central aggregator. To overcome these limitations, we propose a hybrid blockchain-based federated learning framework that uniquely combines public and private blockchain architectures with multi-agent reinforcement learning. Our framework enables transparent sharing of model update through the public blockchain while protecting sensitive computations in private chains. Each organization operates as an intelligent agent, using Q-learning to optimize its participation strategy and resource allocation, thus aligning individual incentives with collective goals. Notably, we introduce an efficient unlearning mechanism based on Low-Rank Adaptation (LoRA) that enables selective removal of specific data contributions without compromising the model's overall performance. Through extensive experimentation on real-world datasets, we demonstrate that our framework effectively balances privacy protection, trust establishment, and regulatory compliance while maintaining high model performance.

The Granger framework is useful for discovering causal relations in time-varying signals. However, most Granger causality (GC) methods are developed for densely sampled timeseries data. A substantially different setting, particularly common in medical imaging, is the longitudinal study design, where multiple subjects are followed and sparsely observed over time. Longitudinal studies commonly track several biomarkers, which are likely governed by nonlinear dynamics that might have subject-specific idiosyncrasies and exhibit both direct and indirect causes. Furthermore, real-world longitudinal data often suffer from widespread missingness. GC methods are not well-suited to handle these issues. In this paper, we propose an approach named GLACIAL (Granger and LeArning-based CausalIty Analysis for Longitudinal studies) to fill this methodological gap by marrying GC with a multi-task neural forecasting model. GLACIAL treats subjects as independent samples and uses the model's average prediction accuracy on hold-out subjects to probe causal links. Input dropout and model interpolation are used to efficiently learn nonlinear dynamic relationships between a large number of variables and to handle missing values respectively. Extensive simulations and experiments on a real longitudinal medical imaging dataset show GLACIAL beating competitive baselines and confirm its utility. Our code is available at //github.com/mnhng/GLACIAL.

Large language models (LLMs) have shown increasing competence in solving mathematical reasoning problems. However, many open-source LLMs still struggle with errors in calculation and semantic understanding during intermediate reasoning steps. In this work, we introduce Prove, a simple yet effective framework that leverages translated programs derived from natural language solutions as a verification mechanism to filter out potentially incorrect reasoning paths before aggregating final answers. Unlike vanilla majority voting, our approach filters out solutions whose corresponding program output is inconsistent with the generated solution, aggregating only those that pass verification. We conducted extensive experiments using 13 open-source LLMs from various model families and sizes, ranging from 0.5B to 13B parameters, across eight mathematical benchmarks. Our results show that Prove consistently outperforms vanilla majority voting as a heuristic for solving mathematical reasoning tasks across all model sizes and datasets, achieving improvements of up to 18% on GSM8K and 8% on MATH-500. Our codes are available at //github.com/declare-lab/prove.

DNN-based language models perform excellently on various tasks, but even SOTA LLMs are susceptible to textual adversarial attacks. Adversarial texts play crucial roles in multiple subfields of NLP. However, current research has the following issues. (1) Most textual adversarial attack methods target rich-resourced languages. How do we generate adversarial texts for less-studied languages? (2) Most textual adversarial attack methods are prone to generating invalid or ambiguous adversarial texts. How do we construct high-quality adversarial robustness benchmarks? (3) New language models may be immune to part of previously generated adversarial texts. How do we update adversarial robustness benchmarks? To address the above issues, we introduce HITL-GAT, a system based on a general approach to human-in-the-loop generation of adversarial texts. HITL-GAT contains four stages in one pipeline: victim model construction, adversarial example generation, high-quality benchmark construction, and adversarial robustness evaluation. Additionally, we utilize HITL-GAT to make a case study on Tibetan script which can be a reference for the adversarial research of other less-studied languages.

Large language model (LLM)-based applications consist of both LLM and non-LLM components, each contributing to the end-to-end latency. Despite great efforts to optimize LLM inference, end-to-end workflow optimization has been overlooked. Existing frameworks employ coarse-grained orchestration with task modules, which confines optimizations to within each module and yields suboptimal scheduling decisions. We propose fine-grained end-to-end orchestration, which utilizes task primitives as the basic units and represents each query's workflow as a primitive-level dataflow graph. This explicitly exposes a much larger design space, enables optimizations in parallelization and pipelining across primitives of different modules, and enhances scheduling to improve application-level performance. We build Teola, a novel orchestration framework for LLM-based applications that implements this scheme. Comprehensive experiments show that Teola can achieve up to 2.09x speedup over existing systems across various popular LLM applications.

Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems. However, the impact of different prompting methods and LLM-NMT combinations on idiom translation has yet to be thoroughly investigated. This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$\rightarrow$English and English$\rightarrow$Persian translations, with Persian idioms sampled from our PersianIdioms resource, a collection of 2,200 idioms and their meanings. Using these datasets, we evaluate various open- and closed-source LLMs, NMT models, and their combinations. Translation quality is assessed through idiom translation accuracy and fluency. We also find that automatic evaluation methods like LLM-as-a-judge, BLEU and BERTScore are effective for comparing different aspects of model performance. Our experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions. For English$\rightarrow$Persian, combining weaker LLMs with Google Translate improves results, while Persian$\rightarrow$English translations benefit from single prompts for simpler models and complex prompts for advanced ones.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

北京阿比特科技有限公司