亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the completion of approximately low rank matrices with entries missing not at random (MNAR). In the context of typical large-dimensional statistical settings, we establish a framework for the performance analysis of the nuclear norm minimization ($\ell_1^*$) algorithm. Our framework produces \emph{exact} estimates of the worst-case residual root mean squared error and the associated phase transitions (PT), with both exhibiting remarkably simple characterizations. Our results enable to {\it precisely} quantify the impact of key system parameters, including data heterogeneity, size of the missing block, and deviation from ideal low rankness, on the accuracy of $\ell_1^*$-based matrix completion. To validate our theoretical worst-case RMSE estimates, we conduct numerical simulations, demonstrating close agreement with their numerical counterparts.

相關內容

Recent years have seen vast progress in the development of machine learned force fields (MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the reliability of MLFFs in molecular dynamics (MD) simulations is facing growing scrutiny due to concerns about instability over extended simulation timescales. Our findings suggest a potential connection between robustness to cumulative inaccuracies and the use of equivariant representations in MLFFs, but the computational cost associated with these representations can limit this advantage in practice. To address this, we propose a transformer architecture called SO3krates that combines sparse equivariant representations (Euclidean variables) with a self-attention mechanism that separates invariant and equivariant information, eliminating the need for expensive tensor products. SO3krates achieves a unique combination of accuracy, stability, and speed that enables insightful analysis of quantum properties of matter on extended time and system size scales. To showcase this capability, we generate stable MD trajectories for flexible peptides and supra-molecular structures with hundreds of atoms. Furthermore, we investigate the PES topology for medium-sized chainlike molecules (e.g., small peptides) by exploring thousands of minima. Remarkably, SO3krates demonstrates the ability to strike a balance between the conflicting demands of stability and the emergence of new minimum-energy conformations beyond the training data, which is crucial for realistic exploration tasks in the field of biochemistry.

As the automotive world moves toward higher levels of driving automation, Level 3 automated driving represents a critical juncture. In Level 3 driving, vehicles can drive alone under limited conditions, but drivers are expected to be ready to take over when the system requests. Assisting the driver to maintain an appropriate level of Situation Awareness (SA) in such contexts becomes a critical task. This position paper explores the potential of Attentive User Interfaces (AUIs) powered by generative Artificial Intelligence (AI) to address this need. Rather than relying on overt notifications, we argue that AUIs based on novel AI technologies such as large language models or diffusion models can be used to improve SA in an unconscious and subtle way without negative effects on drivers overall workload. Accordingly, we propose 5 strategies how generative AI s can be used to improve the quality of takeovers and, ultimately, road safety.

We provide a quantitative assessment of welfare in the classical model of risk-sharing and exchange under uncertainty. We prove three kinds of results. First, that in an equilibrium allocation, the scope for improving individual welfare by a given margin (an $\varepsilon$-improvement) vanishes as the number of states increases. Second, that the scope for a change in aggregate resources that may be distributed to enhance individual welfare by a given margin also vanishes. Equivalently: in an inefficient allocation, for a given level of resource sub-optimality (as measured by the coefficient of resource under-utilization), the possibilities for enhancing welfare by perturbing aggregate resources decrease exponentially to zero with the number of states. Finally, we consider efficient risk-sharing in standard models of uncertainty aversion with multiple priors, and show that, in an inefficient allocation, certain sets of priors shrink with the size of the state space.

Large Language Models (LLMs) demonstrate ever-increasing abilities in mathematical and algorithmic tasks, yet their geometric reasoning skills are underexplored. We investigate LLMs' abilities in constructive geometric problem-solving one of the most fundamental steps in the development of human mathematical reasoning. Our work reveals notable challenges that the state-of-the-art LLMs face in this domain despite many successes in similar areas. LLMs exhibit biases in target variable selection and struggle with 2D spatial relationships, often misrepresenting and hallucinating objects and their placements. To this end, we introduce a framework that formulates an LLMs-based multi-agents system that enhances their existing reasoning potential by conducting an internal dialogue. This work underscores LLMs' current limitations in geometric reasoning and improves geometric reasoning capabilities through self-correction, collaboration, and diverse role specializations.

Matching problems have been widely studied in the research community, especially Ad-Auctions with many applications ranging from network design to advertising. Following the various advancements in machine learning, one natural question is whether classical algorithms can benefit from machine learning and obtain better-quality solutions. Even a small percentage of performance improvement in matching problems could result in significant gains for the studied use cases. For example, the network throughput or the revenue of Ad-Auctions can increase remarkably. This paper presents algorithms with machine learning predictions for the Online Bounded Allocation and the Online Ad-Auctions problems. We constructed primal-dual algorithms that achieve competitive performance depending on the quality of the predictions. When the predictions are accurate, the algorithms' performance surpasses previous performance bounds, while when the predictions are misleading, the algorithms maintain standard worst-case performance guarantees. We provide supporting experiments on generated data for our theoretical findings.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

北京阿比特科技有限公司