Neural implicit representations, which encode a surface as the level set of a neural network applied to spatial coordinates, have proven to be remarkably effective for optimizing, compressing, and generating 3D geometry. Although these representations are easy to fit, it is not clear how to best evaluate geometric queries on the shape, such as intersecting against a ray or finding a closest point. The predominant approach is to encourage the network to have a signed distance property. However, this property typically holds only approximately, leading to robustness issues, and holds only at the conclusion of training, inhibiting the use of queries in loss functions. Instead, this work presents a new approach to perform queries directly on general neural implicit functions for a wide range of existing architectures. Our key tool is the application of range analysis to neural networks, using automatic arithmetic rules to bound the output of a network over a region; we conduct a study of range analysis on neural networks, and identify variants of affine arithmetic which are highly effective. We use the resulting bounds to develop geometric queries including ray casting, intersection testing, constructing spatial hierarchies, fast mesh extraction, closest-point evaluation, evaluating bulk properties, and more. Our queries can be efficiently evaluated on GPUs, and offer concrete accuracy guarantees even on randomly-initialized networks, enabling their use in training objectives and beyond. We also show a preliminary application to inverse rendering.
Continuous-time (CT) models have shown an improved sample efficiency during learning and enable ODE analysis methods for enhanced interpretability compared to discrete-time (DT) models. Even with numerous recent developments, the multifaceted CT state-space model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, and latent states. This paper presents a novel estimation method that includes these aspects and that is able to obtain state-of-the-art results on multiple benchmarks where a small fully connected neural network describes the CT dynamics. The novel estimation method called the subspace encoder approach ascertains these results by altering the well-known simulation loss to include short subsections instead, by using an encoder function and a state-derivative normalization term to obtain a computationally feasible and stable optimization problem. This encoder function estimates the initial states of each considered subsection. We prove that the existence of the encoder function has the necessary condition of a Lipschitz continuous state-derivative utilizing established properties of ODEs.
We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the $L_1$-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our $L_1$-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all $p\ge 0$, there exists a constant $C_p>1$ such that any $C_p$-approximation algorithm for $F_p$ moment estimation in insertion-only streams with a white-box adversary requires $\Omega(n)$ space for a universe of size $n$. Similarly, there is a constant $C>1$ such that any $C$-approximation algorithm in an insertion-only stream for matrix rank requires $\Omega(n)$ space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)
We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018)} to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control \simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).
Momentum methods, including heavy-ball~(HB) and Nesterov's accelerated gradient~(NAG), are widely used in training neural networks for their fast convergence. However, there is a lack of theoretical guarantees for their convergence and acceleration since the optimization landscape of the neural network is non-convex. Nowadays, some works make progress towards understanding the convergence of momentum methods in an over-parameterized regime, where the number of the parameters exceeds that of the training instances. Nonetheless, current results mainly focus on the two-layer neural network, which are far from explaining the remarkable success of the momentum methods in training deep neural networks. Motivated by this, we investigate the convergence of NAG with constant learning rate and momentum parameter in training two architectures of deep linear networks: deep fully-connected linear neural networks and deep linear ResNets. Based on the over-parameterization regime, we first analyze the residual dynamics induced by the training trajectory of NAG for a deep fully-connected linear neural network under the random Gaussian initialization. Our results show that NAG can converge to the global minimum at a $(1 - \mathcal{O}(1/\sqrt{\kappa}))^t$ rate, where $t$ is the iteration number and $\kappa > 1$ is a constant depending on the condition number of the feature matrix. Compared to the $(1 - \mathcal{O}(1/{\kappa}))^t$ rate of GD, NAG achieves an acceleration over GD. To the best of our knowledge, this is the first theoretical guarantee for the convergence of NAG to the global minimum in training deep neural networks. Furthermore, we extend our analysis to deep linear ResNets and derive a similar convergence result.
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
Similarity query is the family of queries based on some similarity metrics. Unlike the traditional database queries which are mostly based on value equality, similarity queries aim to find targets "similar enough to" the given data objects, depending on some similarity metric, e.g., Euclidean distance, cosine similarity and so on. To measure the similarity between data objects, traditional methods normally work on low level or syntax features(e.g., basic visual features on images or bag-of-word features of text), which makes them weak to compute the semantic similarities between objects. So for measuring data similarities semantically, neural embedding is applied. Embedding techniques work by representing the raw data objects as vectors (so called "embeddings" or "neural embeddings" since they are mostly generated by neural network models) that expose the hidden semantics of the raw data, based on which embeddings do show outstanding effectiveness on capturing data similarities, making it one of the most widely used and studied techniques in the state-of-the-art similarity query processing research. But there are still many open challenges on the efficiency of embedding based similarity query processing, which are not so well-studied as the effectiveness. In this survey, we first provide an overview of the "similarity query" and "similarity query processing" problems. Then we talk about recent approaches on designing the indexes and operators for highly efficient similarity query processing on top of embeddings (or more generally, high dimensional data). Finally, we investigate the specific solutions with and without using embeddings in selected application domains of similarity queries, including entity resolution and information retrieval. By comparing the solutions, we show how neural embeddings benefit those applications.
Music Structure Analysis (MSA) consists in segmenting a music piece in several distinct sections. We approach MSA within a compression framework, under the hypothesis that the structure is more easily revealed by a simplified representation of the original content of the song. More specifically, under the hypothesis that MSA is correlated with similarities occurring at the bar scale, this article introduces the use of linear and non-linear compression schemes on barwise audio signals. Compressed representations capture the most salient components of the different bars in the song and are then used to infer the song structure using a dynamic programming algorithm. This work explores both low-rank approximation models such as Principal Component Analysis or Nonnegative Matrix Factorization and "piece-specific" Auto-Encoding Neural Networks, with the objective to learn latent representations specific to a given song. Such approaches do not rely on supervision nor annotations, which are well-known to be tedious to collect and possibly ambiguous in MSA description. In our experiments, several unsupervised compression schemes achieve a level of performance comparable to that of state-of-the-art supervised methods (for 3s tolerance) on the RWC-Pop dataset, showcasing the importance of the barwise compression processing for MSA.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.